Multi-Agent Systems

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
Winter Term 2018/19

Motivation

- Agents' abilities and/or preferences differ. How can they reach agreements?

■ Distributed Constraint Satisfaction

- De-centralized: Agents hold private constraints and exchange partial solutions.

Constraint Satisfaction: Intro

CSP (Freuder \& Mackworth, 2006)

"Constraint satisfaction involves finding a value for each one of a set of problem variables where constraints specify that some subsets of values cannot be used together." ([1, p. 11])

- Examples:
- Pick appetizer, main dish, wine, dessert such that everything fits together.
- Place furniture in a room such that doors, windows, light switches etc. are not blocked.
-..

AI Research on Constraint Satisfaction

AI Research on Constraint Satisfaction

Constraint Satisfaction Problem

CSP

A CSP is a triple $\mathcal{P}=(X, D, C)$:

- $X=\left(x_{1}, \ldots, x_{n}\right)$: finite list of variables
- $D=\left(D_{1}, \ldots, D_{n}\right)$: finite domains
- $C=\left(C_{1}, \ldots, C_{k}\right)$: finite list of constraint predicates
- Variable x_{i} can take values from D_{i}
- Constraint predicate $C\left(x_{i}, \ldots, x_{l}\right)$ is defined on $D_{i} \times \ldots \times D_{l}$
- Unary constraints: $C($ Wine $) \leftrightarrow$ Wine \neq riesling
- Binary constraints: C (WineAppetizer, WineMainDish) \leftrightarrow WineAppetizer $=$ WineMainDish
- k-ary: C(Alice,Bob,John) \leftrightarrow Alice \wedge Bob \rightarrow John

CSP: Graph coloring

Problem statement

Given a graph $G=(V, E)$ and a set of colors N. Find a coloring $f: V \rightarrow N$ that assigns to each $v_{i} \in V$ a color different from those of its neighbors.

CSP formulation

Renresent aranh coloring as CSP $P=(X, D, C)$:
Each variable $x_{i} \in X$ represents the color of node $v_{i} \in V$
Each $x_{i} \in X$ can get a value from its domain $D_{i}=N$
For all $\left(x_{i}, x_{i}\right) \in E$ add a constraint $c\left(x_{i}, x_{i}\right) \leftrightarrow x_{i} \neq x_{i}$.

CSP: Graph coloring

Problem statement

Given a graph $G=(V, E)$ and a set of colors N. Find a coloring $f: V \rightarrow N$ that assigns to each $v_{i} \in V$ a color different from those of its neighbors.

CSP formulation

Represent graph coloring as CSP $\mathcal{P}=(X, D, C)$:

- Each variable $x_{i} \in X$ represents the color of node $v_{i} \in V$
- Each $x_{i} \in X$ can get a value from its domain $D_{i}=N$
- For all $\left(x_{i}, x_{j}\right) \in E$ add a constraint $c\left(x_{i}, x_{j}\right) \leftrightarrow x_{i} \neq x_{j}$.

Graph coloring: Encoding

Colors: 1, 2, 3

CSP Encoding

Represention of this instance as a $\operatorname{CSP} \mathcal{P}=(X, D, C)$:

- $X=\left(x_{A}, x_{B}, x_{C}, x_{D}\right)$
- $D=(\{1,2,3\},\{1,2,3\},\{1,2,3\},\{1,2,3\})$
- $C\left(x_{A}, x_{B}\right) \leftrightarrow x_{A} \neq x_{B}, C\left(x_{A}, x_{C}\right) \leftrightarrow x_{A} \neq x_{C}$, $C\left(x_{B}, x_{C}\right) \leftrightarrow x_{B} \neq x_{C}, C\left(x_{C}, x_{D}\right) \leftrightarrow x_{C} \neq x_{D}$

Solution of a CSP

Definition

A solution of a CSP $\mathcal{P}=(X, D, C)$ is an assignment $a: X \rightarrow \bigcup_{i: x_{i} \in X} D_{i}$ such that:
$\square a\left(x_{i}\right) \in D_{i}$ for each $x_{i} \in X$

- Every constraint $C\left(x_{i}, \ldots, x_{m}\right) \in C$ is evaluated true under $\left\{x_{i} \rightarrow a\left(x_{i}\right), \ldots, x_{m} \rightarrow a\left(x_{m}\right)\right\}$.
$\square \mathcal{P}$ is satisfiable iff \mathcal{P} has a solution.

Graph coloring: Solution

Colors: 1, 2, 3

Solutions

$$
\begin{aligned}
& a\left(x_{A}\right)=1, a\left(x_{B}\right)=2, a\left(x_{C}\right)=3, a\left(x_{D}\right)=1 \\
& a\left(x_{A}\right)=1, a\left(x_{B}\right)=2, a\left(x_{C}\right)=3, a\left(x_{D}\right)=2 \\
& a\left(x_{A}\right)=2, a\left(x_{B}\right)=1, a\left(x_{C}\right)=3, a\left(x_{D}\right)=1
\end{aligned}
$$

- Here: 81 assignments, 12 solutions. Can we do better than listing all assignments?

CSP: NP-completeness

- CSP is NP-complete:
- Membership: Guess a legal assignment of values to variables. Testing whether the assignment is a solution can be done in polynomial time (just check that all the constraints hold).
- Hardness: Employ that graph coloring is known to be NP-complete and see reduction to CSP on earlier slides. More common reduction: Reduce 3SAT to CSP. Each propositional variable in the 3SAT-formula is represented as a variable in the CSP with domain $\{0,1\}$. Three-ary constraints as given by the clauses.

Using search

- In case of n variables with domains of size d there are $O\left(d^{n}\right)$ assignments.
- We can use all sorts of search algorithms to intelligently explore the space of assignments and to eventually find a solution.
- We will use backtracking search and employ two concepts:
- Partial solution
- Nogood

Partial solution of a CSP

Definition

Given a CSP $\mathcal{P}=(X, D, C)$.

- An instantiation of a subset $X^{\prime} \subseteq X$ is an assignment $a: X^{\prime} \rightarrow \bigcup_{i: x_{i} \in X^{\prime}} D_{i}$.
- An instantiation a of X^{\prime} is a partial solution if a satisfies all constraints in C defined over some subset of X^{\prime}. Then a is locally consistent.
- Hence, a solution is a locally consistent instantiation of all $x \in X$.

Graph coloring: Partial Solution

Colors: 1, 2, 3

Locally consistent partial solutions

$$
\begin{aligned}
& a\left(x_{A}\right)=\perp, a\left(x_{B}\right)=\perp, a\left(x_{C}\right)=\perp, a\left(x_{D}\right)=\perp \\
& a\left(x_{A}\right)=1, a\left(x_{B}\right)=\perp, a\left(x_{C}\right)=\perp, a\left(x_{D}\right)=\perp \\
& a\left(x_{A}\right)=1, a\left(x_{B}\right)=2, a\left(x_{C}\right)=\perp, a\left(x_{D}\right)=\perp \\
& a\left(x_{A}\right)=1, a\left(x_{B}\right)=2, a\left(x_{C}\right)=3, a\left(x_{D}\right)=\perp \\
& a\left(x_{A}\right)=1, a\left(x_{B}\right)=2, a\left(x_{C}\right)=3, a\left(x_{D}\right)=1
\end{aligned}
$$

Definition

Given a CSP $\mathcal{P}=(X, D, C)$. An instantiation a^{\prime} of $X^{\prime} \subseteq X$ is a nogood of \mathcal{P} iff a^{\prime} cannot be extended to a full solution of \mathcal{P}.

Graph coloring: Nogood

Colors: 1, 2, 3

Nogood
$a\left(x_{A}\right)=1, a\left(x_{B}\right)=1, a\left(x_{C}\right)=\perp, a\left(x_{D}\right)=\perp$

Backtracking Algorithm

function $\mathrm{BT}(\mathcal{P}$, part_sol)
if isSolution(part_sol) then return part_sol
end if
if isNoGood(part_sol, \mathcal{P}) then return false
end if
select some x_{j} so far undefined in part_sol
for possible values $d \in D_{j}$ for x_{j} do
par_sol $\leftarrow \mathrm{BT}\left(\mathcal{P}\right.$, par_sol $\left.\left[x_{j} \mid d\right]\right)$
if par_sol \neq False then
return par_sol
end if
end for
return False
end function

Graph coloring: Backtracking

Colors: 1, 2, 3

Graph coloring: Backtracking

Colors: 1, 2, 3

$$
B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1\right\}\right) B T(\mathcal{P},\{ \})
$$

Graph coloring: Backtracking

Colors: 1, 2, 3

$$
\begin{gathered}
B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1\right\}\right) \\
B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 1\right\}\right)
\end{gathered}
$$

Graph coloring: Backtracking

Colors: 1, 2, 3

$$
\begin{gathered}
B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1\right\}\right) \\
B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 1\right\}\right) \quad B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2\right\}\right)
\end{gathered}
$$

Graph coloring: Backtracking

Colors: 1, 2, 3

$$
\begin{gathered}
B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1\right\}\right) B T(\mathcal{P},\{ \}) \\
B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 1\right\}\right) \quad B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2\right\}\right) \\
B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2, x_{C} \rightarrow 1\right\}\right)
\end{gathered}
$$

Graph coloring: Backtracking

Colors: 1, 2, 3

$$
\begin{aligned}
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1\right\}\right) B T(\mathcal{P},\{ \}) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 1\right\}\right) \quad B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2\right\}\right) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2, x_{C} \rightarrow 1\right\}\right) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2, x_{C} \rightarrow 2\right\}\right)
\end{aligned}
$$

Graph coloring: Backtracking

Colors: 1, 2, 3

$$
\begin{aligned}
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1\right\}\right) B T(\mathcal{P},\{ \}) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 1\right\}\right) \quad B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2\right\}\right) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2, x_{C} \rightarrow 1\right\}\right) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2, x_{C} \rightarrow 2\right\}\right) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2, x_{C} \rightarrow 3\right\}\right)
\end{aligned}
$$

Graph coloring: Backtracking

Colors: 1, 2, 3

$$
\begin{aligned}
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1\right\}\right) B T(\mathcal{P},\{ \}) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 1\right\}\right) \quad B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2\right\}\right) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2, x_{C} \rightarrow 1\right\}\right) \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 1, \frac{B T}{},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2, x_{C} \rightarrow 3, x_{D} \rightarrow 1\right\}\right)\right. \\
& B T\left(\mathcal{P},\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 2, x_{C} \rightarrow 3\right\}\right)
\end{aligned}
$$

An MAS Example

- Nodes A, B, C, and D represent families living in a neighborhood. An edge between two nodes models that the represented families are direct neighbors. Each family wants to buy a new car, but they don't want their respective neighbors to own the same car as they do.
- Centralized solution: A, B, C, D meet, make their constraints public and find a solution together.
- Decentralized solution: A, B, C, D do not meet. Instead, they just buy cars. If someone dislikes one other's choice (s)he will either buy another one or tell the neighbor to do so (without telling why).

Distributed Constraint Satisfaction (DisCSP): Motivation

- Centralized agent decision making encoded as CSP:
- Each variable stands for the action of an agent. Constraints between variables model the interrelations between the agents' actions. A CSP solver solves the CSP and communicates the result to each of the agents.
- This, however, presupposes a central component that knows about all the variables and constraints. So what?

■ In some applications, gathering all information to one component is undesirable or impossible, e.g., for security/privacy reasons, because of too high communication costs, because of the need to convert internal knowledge into an exchangeable format.

■ \Rightarrow Distributed Constraint Satisfaction (DisCSP)

Distributed Constraint Satisfaction Problem

CSP

A DistCSP is a tuple $\mathcal{P}=(A, X, D, C)$:

- $A=\left(a g_{1}, \ldots, a g_{n}\right)$: finite list of agents
- $X=\left(x_{1}, \ldots, x_{n}\right)$: finite list of variables
- $D=\left(D_{1}, \ldots, D_{n}\right)$: finite list of domains
- $C=\left(C_{1}, \ldots, C_{k}\right)$: finite list of constraint predicates
- Variable x_{i} can take values from D_{i}
- Constraint predicate $C\left(x_{i}, \ldots, x_{l}\right)$ is defined on $D_{i} \times \ldots \times D_{l}$
- Variable x_{i} belongs (only) to agent $a g_{i}$
- Agent $a g_{i}$ knows all constraints on x_{i}

DisCSP: Solution

Definition

- An assignment a is a solution to a distributed CSP (DisCSP) instance if and only if:
- Every variable x_{i} has some assigned value $d \in D_{i}$, and
- For all agents $a g_{i}$: Every constraint predicate that is known by ag_{i} evaluates to true under the assignment $a\left(x_{i}\right)=d$

Example as a DisCSP

Colors: 1, 2, 3

Encoding

- $A=(A, B, C, D), X=\left(x_{A}, x_{B}, x_{C}, x_{D}\right), D_{A}=\{1,2,3\}, D_{B}=\{1\}$, $D_{C}=\{2,3\}, D_{D}=\{3\}$
- Constraints
- $A: x_{A} \neq x_{B}, x_{A} \neq x_{C}$
- B: $x_{B} \neq x_{A}, x_{B} \neq x_{C}$
- $C: x_{C} \neq x_{A}, x_{C} \neq x_{B}, x_{C} \neq x_{D}$
- $D: x_{D} \neq x_{C}$

Synchronous Backtracking

- Modification of the backtracking algorithm

1 Agents agree on an instantiation order for their variables (x_{1} goes first, then goes x_{2} etc.)
2 Each agent receiving a partial solution instantiates its variable based on the constraints it knows about
3 If the agent finds such a value it will append it to the partial solution and pass it on to the next agent
4 Otherwise, it sends a backtracking message to the previous agent

Synchronous Backtracking: Example Trace

$1 A, B, C$, and D agree on acting in this order
2 A sets x_{A} to 1 and sends $\left\{x_{A} \rightarrow 1\right\}$ to B
3 B sends backtrack! to A
4 A sets x_{A} to 2 and sends $\left\{x_{A} \rightarrow 2\right\}$ to B
5 B sets x_{B} to 1 and sends $\left\{x_{A} \rightarrow 2, x_{B} \rightarrow 1\right\}$ to C
6 C sets c_{C} to 3 and sends $\left\{x_{A} \rightarrow 2, x_{B} \rightarrow 1, x_{C} \rightarrow 3\right\}$ to D
7 D sends backtrack! to C
8 C sends backtrack! to B
9 B sends backtrack! to A
10 A sets x_{A} to 3 and sends $\left\{x_{A} \rightarrow 3\right\}$ to B
11 B sets x_{B} to 1 and sends $\left\{x_{A} \rightarrow 3, x_{B} \rightarrow 1\right\}$ to C
12 C sets x_{C} to 2 and sends $\left\{x_{A} \rightarrow 3, x_{B} \rightarrow 1, x_{C} \rightarrow 2\right\}$ to D
13 D sets x_{D} to 3 .

Synchronous Backtracking: Pro/Con

- Pro: No need to share private constraints and domains with some centralized decision maker
- Con: Determining instantiation order requires communication costs
- Con: Agents act sequentially instead of taking advantage of parallelism, i.e., at any given time, only one agent is receiving a partial solution and acts on it

Asynchronous Backtracking

- Each agent maintains three properties:

■ current_value: value of its owned variable (subject to revision)

- agent_view: what the agent knows so far about the values of other agents
- constraint_list: ist of private constraints and received nogoods
- Each agent i can send messages of two kinds:
- (ok?, $x_{j} \rightarrow d$)
- (nogood!, $\left.i,\left\{x_{j} \rightarrow d_{j}, x_{k} \rightarrow d_{k}, \ldots\right\}\right)$

Asynchronous Backtracking: Assumption

- Assumption: For each contraint, there is one evaluating agent and one value sending agent. Hence, the graph is directed!
- In some applications this may be naturally so (e.g., only one of the agents actually cares about the constraint)
- In other applications, two agents involved in a constraint have to decide who will be the sender/evaluator.

Asynchronous Backtracking

if received (ok?, $\left.\left(x_{j}, d_{j}\right)\right)$ then add $\left(x_{j}, d_{j}\right)$ to agent_view CheckAgentView()
end if
function CheckAgentView
if agent_view and current_value are not consistent then
if no value in D_{i} is consistent with agent_view then
Backtrack()
else
select $d \in D_{i}$ s.th. agent_view and d consistent current_value $\leftarrow d$ send (ok?, $\left.\left(x_{i}, d\right)\right)$ to outgoing links
end if
end if
end function

Asynchronous Backtracking (cont.)

function BACKTRACK

if \emptyset is a nogood then
broadcast that there is no solution and terminate end if
generate a nogood V (inconsistent subset of agent_view) select $\left(x_{j}, d_{j}\right) \in V$ s.th. x_{j} has lowest priority in V send (nogood!, $x_{i}, \mathrm{~V}$) to x_{j}; remove $\left(x_{j}, d_{j}\right)$ from agent_view end function
if received (nogood!, x_{j}, \{nogood\})) then
add nogood to constraint_list
if nogood contains agent x_{k} that is not yet a neighbor then add x_{k} as neighbor and ask x_{k} to add x_{i} as neighbor
end if
CheckAgentView()
end if

Asynchronous Backtracking: Example

Colors: 1, 2, 3

- The graph is now directed (source: sender agent, sink: evaluator agent). All other things the same as before.

Example Trace

Colors: 1, 2, 3

1 Each agent initializes its private variable and sends ok?-messages down the links

Agent	Current Value	Agent View	Constraint List
A	1	$\left\{x_{B} \rightarrow 1\right\}$	$x_{A} \neq x_{B}$
B	1	\emptyset	\emptyset
C	2	$\left\{x_{A} \rightarrow 1, x_{B} \rightarrow 1\right\}$	$x_{C} \neq x_{A}, x_{C} \neq x_{B}$
D	3	$\left\{x_{C} \rightarrow 2\right\}$	$x_{D} \neq x_{C}$

Example Trace

Colors: 1, 2, 3

2 Agent A changes its value to 2 and sends ok? to C

Agent	Current Value	Agent View	Constraint List
A	2	$\left\{x_{B} \rightarrow 1\right\}$	$x_{A} \neq x_{B}$
B	1	\emptyset	\emptyset
C	2	$\left\{x_{A} \rightarrow 2, x_{B} \rightarrow 1\right\}$	$x_{C} \neq x_{A}, x_{C} \neq x_{B}$
D	3	$\left\{x_{C} \rightarrow 2\right\}$	$x_{D} \neq x_{C}$

Example Trace

Colors: 1, 2, 3

3 Agent C changes its value to 3 and sends ok? to D

Agent	Current Value	Agent View	Constraint List
A	2	$\left\{x_{B} \rightarrow 1\right\}$	$x_{A} \neq x_{B}$
B	1	\emptyset	\emptyset
C	3	$\left\{x_{A} \rightarrow 2, x_{B} \rightarrow 1\right\}$	$x_{C} \neq x_{A}, x_{C} \neq x_{B}$
D	3	$\left\{x_{C} \rightarrow 3\right\}$	$x_{D} \neq x_{C}$

Example Trace

Colors: 1, 2, 3

4 Agent D sends (nogood!, D, $\left\{x_{C} \rightarrow 3\right\}$) to C

Agent	Current Value	Agent View	Constraint List
A	2	$\left\{x_{B} \rightarrow 1\right\}$	$x_{A} \neq x_{B}$
B	1	\emptyset	\emptyset
C	3	$\left\{x_{A} \rightarrow 2, x_{B} \rightarrow 1\right\}$	$x_{C} \neq x_{A}, x_{C} \neq x_{B}, x_{C} \neq 3$
D	3	\emptyset	$x_{D} \neq x_{C}$

Example Trace

Colors: 1, 2, 3

5 Agent C sends (nogood!, C, $\left\{x_{A} \rightarrow 2\right\}$) to A

Agent	Current Value	Agent View	Constraint List
A	2	$\left\{x_{B} \rightarrow 1\right\}$	$x_{A} \neq x_{B}, x_{A} \neq 2$
B	1	\emptyset	\emptyset
C	3	$\left\{x_{B} \rightarrow 1\right\}$	$x_{C} \neq x_{A}, x_{C} \neq x_{B}, x_{C} \neq 3$
D	3	\emptyset	$x_{D} \neq x_{C}$

Example Trace

Colors: 1, 2, 3

6 Agent A sets value to 3 and sends ok? to C

Agent	Current Value	Agent View	Constraint List
A	3	$\left\{x_{B} \rightarrow 1\right\}$	$x_{A} \neq x_{B}, x_{A} \neq 2$
B	1	\emptyset	\emptyset
C	3	$\left\{x_{A} \rightarrow 3, x_{B} \rightarrow 1\right\}$	$x_{C} \neq x_{A}, x_{C} \neq x_{B}, x_{C} \neq 3$
D	3	\emptyset	$x_{D} \neq x_{C}$

Example Trace

Colors: 1, 2, 3

7 Agent C sets value to 2 and sends ok? to D

Agent	Current Value	Agent View	Constraint List
A	3	$\left\{x_{B} \rightarrow 1\right\}$	$x_{A} \neq x_{B}, x_{A} \neq 2$
B	1	\emptyset	\emptyset
C	2	$\left\{x_{A} \rightarrow 3, x_{B} \rightarrow 1\right\}$	$x_{C} \neq x_{A}, x_{C} \neq x_{B}, x_{C} \neq 3$
D	3	$\left\{x_{C} \rightarrow 2\right\}$	$x_{D} \neq x_{C}$

$1 A, B$, and C set their variables to 1 and send ok?
$2 A, B$, and C set their variables to 2 and send ok?
$3 \mathrm{~A}, \mathrm{~B}$, and C set their variables to 1 and send ok?
4

Avoiding Loops

- Postulate an order over the agents (e.g., IDs). Based on that order, e.g., a link always goes from a higher-order to a lower-order agent.

$1 \quad A, B$, and C set their variables to $1, A$ and B send ok?
$2 B$ and C set their variables to $2, B$ sends ok?
3 C sets its variable to 3

The empty Nogood

Theorem (see [2])

The CSP is unsatisfiable iff the empty Nogood is generated.

- Example of an empty nogood:

Colors: 1

$1 A$ and B set their variables to $1, A$ sends ok?
2 B sends (nogood!, $x_{A} \rightarrow 1$)
3 A generates a nogood, and as A's agent view is empty, the generated nogood is empty as well.

Summary and Outlook

- This time
- Constraint Satisfaction Problem \& Backtracking algorithm
- Distributed Constraint Satisfaction Problem \& Synchronous and Asynchronous Backtracking
- Next time
- Argumentation

Literature I

E
E. C. Freuder, A. K. Mackworth, Constraint satisfaction: An emerging paradigm, In F. Rossi, P. van Beek, T. Walsh (Eds.) Handbook of Constraint Programming, Elsevier, 2006.
M. Yokoo, T. Ishida, E. H. Durfee, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed problem solving, In 12th IEEE International Conference on Distributed Computing Systems '92, pp. 614-621, 1992.
M. Yokoo, K. Hirayama, Algorithms for distributed constraint satisfaction: A review, Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 2, pp. 198-212, 2000.

