
Multi-Agent Systems

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
Winter Term 2018/19

GOAL Agents: Cognitive State

GOAL agents are cognitive agents that maintain a cognitive
state, which consists of:

Percepts: Received from the environment via the entity that
the agent controls.
Messages: Received from other agents (speech acts).
Knowledge: Domain information and conceptual definitions
that do not change over time.
Beliefs: Facts about the environment which may change
over time.
Goals: (Partial) specifications of states the agent wants to
bring about.

Nebel, Lindner, Engesser – MAS 2 / 19

GOAL Agents: Core Abilities

GOAL agents have three core abilities:
Event processing: Allows an agent to update its beliefs and
goals based on percepts and messages.
Representing knowledge: Allows agents to represent and
reason with its knowledge, beliefs, and goals.
Decision-making: Allows agents to select an action to
perform next based on current beliefs and goals.

Action specifications: Inform agents about when an action
can be performed and what its effects are.

Nebel, Lindner, Engesser – MAS 3 / 19

Running Example Domain

To exemplify the core concepts of GOAL, we will employ the
Blocks World domain:

Blocks World consists of N numbered blocks b1 . . .bN and
table.
Blocks can be stacked over oneanother by using
move(X ,Y) actions. E.g., move(b1,b2) would move block
b1 on top of b2 if both blocks are clear.
A configuration in the Blocks World can be indentified with a
set of facts of the form on(X ,Y). For each block X , the
agent perceives one fact on(X ,Y).
Laws of Blocks World: At most one block is directly on top of
another, a block cannot be directly on top of more than two
other blocks etc.
Problem: Given some initial configuration of the blocks, the
agent’s task is to perform a sequence of stacking actions
such that a configuration is achieved which satisfies the
goal.

Nebel, Lindner, Engesser – MAS 4 / 19

Initializing BlocksWorld Environment

use “blocksworld-1.2.0.jar” as environment with start = [2,
3, 0, 5, 0, 7, 0].
The environment is implemented as a Java program.
The start parameter reads: b1 is on top of b2, b2 is on top
of b3, b3 is on the table etc.

Nebel, Lindner, Engesser – MAS 5 / 19

Initializing the Agent

define stackAgent as agent {
use stackBehavior as main.

}

Nebel, Lindner, Engesser – MAS 6 / 19

Connecting Agent to Environment

launchpolicy {
when name=gripper launch stackAgent.

}

Nebel, Lindner, Engesser – MAS 7 / 19

Actually Creating Cognitive States in GOAL

Cognitive State
Informational State

Knowledge base: use <prologfile> as knowledge.
Belief base: use <prologfile> as belief.

Motivational State
Goal base: use <prologfile> as goal.

Nebel, Lindner, Engesser – MAS 8 / 19

Domain Knowledge

We define the predicate block/1 to make explicit that
everything that is on top of something is a block:

block(X) :- on(X, _).
(A block which is not on top of another block is on the table.
Hence, every block will qualify as a block according to this
rule.)

We define the predicate clear/1 to identify those entities
which have no other block on top of them, i.e., those on top
of which other blocks can be stacked. Any block can always
be put on the table, therefore, the table also is clear
according to this reading.

clear(table).
clear(X) :- block(X), not(on(_, X)).

As on/2 is only used in bodies, we have to specify on/2 as
dynamic:

:-dynamic on/2.

Nebel, Lindner, Engesser – MAS 9 / 19

Floundering

We cannot write this: clear(X) :- not(on(_, X)), block(X).
What goes wrong: Negation is applied to non-ground atom
(viz., variable X is not yet instantiated). However,
not-operator does not bind any variables.
A Prolog program that applies to a non-ground literal is said
to flounder.

Nebel, Lindner, Engesser – MAS 10 / 19

Closed-World Assumption

Negation-as-Failure yields that everything not stated is
assumed to be false. E.g., the absence of information about
any blocks on, say, block 1 yields the inference that block 1
is clear.
Cotrast this with entailment you know from e.g.
propositional or modal logics.

Nebel, Lindner, Engesser – MAS 11 / 19

Conceptual Knowledge

We define the concept of a tower as a (possibly singleton)
sequence of blocks stacked over another.

tower([X]) :- on(X, table).
tower([X, Y | T) :- on(X, Y), tower([Y | T]).

I.e.: Any block directly on the table is a tower. If something
is a tower, then the something which results from stacking a
block on top of that tower is again a tower.
Note that if [X | T] is a tower, this does not mean that X is
clear (other blocks may extend the tower to yet a bigger
one).

Nebel, Lindner, Engesser – MAS 12 / 19

Starting the GOAL Agent

Starting the GOAL agent opens a visualization of the
environment.
The stackAgent receives percepts on(b1, b2), ...
The stackAgent lacks beliefs and goals. Therefore, nothing
happens.

Nebel, Lindner, Engesser – MAS 13 / 19

Building Beliefs from Percepts

Add event module to agent definition, e.g., like this:
use stackEvents as event.
Add a belief base to event module. Add the knowledge
base as knowledge base.
Write into event module:

forall bel(on(X, Y)), not(percept(on(X, Y))) do delete(on(X, Y)).
forall percept(on(X, Y)), not(bel(on(X, Y))) do insert(on(X, Y)).

Nebel, Lindner, Engesser – MAS 14 / 19

Adding Goals

First add an init module which gets executed once after the
agent started.
Declare knowledge base.
Write: if true then adopt(on(b1, b5), on(b2, table), on(b3,
table), on(b4, b3), on(b5, b2), on(b6, b4), on(b7, table)).

Nebel, Lindner, Engesser – MAS 15 / 19

Goals in GOAL

Goals must be ground.
Conjunctive goals: What’s the difference?

Goal1: on(2, 1). on(3, 2).
Goal2: on(2, 1), on(3, 2).

Achievement goal
a-goal(qry) = goal(qry), not(bel(qry))

Sub-Goals Achieved:
goal-a(qry) = goal(qry), bel(qry)

Blind commitment
Explicit drop-action, adopt action

Nebel, Lindner, Engesser – MAS 16 / 19

Decision Making

Add goal prolog file.
Declare goal file in main module.
Implement simple strategy:

if a-goal(tower([X, Y | T])), bel(tower([Y|T])) then move(X, Y).
if a-goal(tower([X | T])) then move(X, table).

Nebel, Lindner, Engesser – MAS 17 / 19

Action Specifications

Add an action specification for action move(X,Y).
Declare knowledge base.
Define action’s pre- and post-conditions. Like this:
define move(X, Y) with

pre{clear(X), clear(Y), on(X, Z)}
post{not(on(X, Z)), on(X, Y)}

Add actionspec to main module.
Notes

Different meaning of not
Relation to add- and delete-lists in STRIPS
Instantaneous vs. Durative Actions — when to specify
post-conditions and when better to use just true

Nebel, Lindner, Engesser – MAS 18 / 19

Literature

Hindriks, K. V., Programming Cognitive Agents in GOAL, Technical
Manual, 2017, https://goalapl.atlassian.net/wiki/.

Nebel, Lindner, Engesser – MAS 19 / 19

