
Multi-Agent Systems

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
Winter Term 2018/19

Logical Programming for BDI-Agents:
Motivation

Basic Assumption: Agents maintain mental states
(knowledge, belief, desires, intentions) in some knowledge
base.
Knowledge Base: Is a set of formulae written in some
formal language.
Requirement: A computational system for maintaining and
querying a knowledge base.
GOAL employs Prolog for that pupose.

Nebel, Lindner, Engesser – MAS 2 / 24

A Simple Prolog Program

The simplest Prolog programs are just a list of facts:

student(eva).
student(hans).
subject(eva, cs).
subject(hans, phil).

Nebel, Lindner, Engesser – MAS 3 / 24

A Simple Prolog Program

Prolog program
student(eva).
student(hans).
subject(eva, cs).
subject(hans, phil).

Queries
?- student(eva).
yes
?- student(christian).
no
?- subject(eva, cs).
yes
?- professor(hugo).
ERROR: Undefined procedure:
professor/1

Nebel, Lindner, Engesser – MAS 4 / 24

A Simple Prolog Program

Prolog program
student(eva).
student(hans).
subject(eva, cs).
subject(hans, phil).

Queries
?- student(X).
X = eva ;
X = hans ;
no
?- subject(X, cs).
X = eva;
no
?- subject(X, X).
no

Nebel, Lindner, Engesser – MAS 5 / 24

Prolog Syntax: Atoms

Atoms
Terms that consists of letters, numbers, and the underscore,
and which start with a non-capital letters: eva, cs, dr_who,
hal2000
Terms that are enclosed in single quotes: ’President Trump’,
’(@*+’
Certain special symbols like +, , , :-

Nebel, Lindner, Engesser – MAS 6 / 24

Prolog Syntax: Variables

Variables
Terms that consist of letters, numbers, and the underscore,
and which start with a capital letter or an underscore: X,
Prof, _x
_ is an anonymous variable: two occurences of _ are
different variables

Program: p(a, a). Queries: ?- p(X, X). vs. ?- p(_, _).

Nebel, Lindner, Engesser – MAS 7 / 24

Prolog Syntax: Complex Terms

Complex Terms
Terms of the form: functor(argument1, . . . , argumentN)
Functors have to be atoms
Arguments can be any kind of Prolog term. Examples:
subject(eva, X), f(a, X, g(Y, h(Z)), c)

Nebel, Lindner, Engesser – MAS 8 / 24

Prolog Syntax: Facts

Facts are complex terms followed by a full stop:
student(eva). subject(hans, phil).
Queries are also complex terms, or sequences of complex
terms separeted by comma, followed by a full stop.

Nebel, Lindner, Engesser – MAS 9 / 24

Prolog Program with Rules

student(eva).
student(hans).
student(laura).
subject(eva, cs).
subject(hans, phil).
subject(laura, eng).
logician(X) :- subject(X, cs).
logician(X) :- subject(X, phil).

:- is read as if...then... (but from right to left): If X’s subject is
cs, then X is a logician. Or: X is a logician, if X’s subject is
cs.

Nebel, Lindner, Engesser – MAS 10 / 24

Prolog Program with Rules

Prolog program
student(eva).
student(hans).
student(laura).
subject(eva, cs).
subject(hans, phil).
subject(laura, eng).
logician(X) :- subject(X, cs).
logician(X) :- subject(X, phil).

Queries
?- logician(eva).
yes
?- logician(laura).
no
?- logician(X).
X = eva ;
X = hans ;
no

Nebel, Lindner, Engesser – MAS 11 / 24

Prolog Syntax: Rules

Rules
Rules are of the Form Head :- Body.
Like facts and queries, they have to be followed by a full
stop.
Head is a compex term.
Body is a complex term or a sequence of complex terms
separated by commas.

Nebel, Lindner, Engesser – MAS 12 / 24

Prolog Program with Rules

Prolog program
student(eva).
student(hans).
student(laura).
subject(eva, cs).
subject(hans, phil).
subject(laura, eng).
logician(X) :- subject(X, cs).
logician(X) :- subject(X, phil).
double_logician(X) :- subject(X,
cs), subject(X, phil).

Queries
?- double_logician(X).
no
?- student(X), subject(X, eng).
yes

Nebel, Lindner, Engesser – MAS 13 / 24

Proof Search: Matching

Two atoms match if they are the same: eva = eva,
eva\ = laura
A variable matches any other term. The variable then gets
instantiated with that term.
Two complex terms match if they have the same functor of
equal arity and if all pairs of arguments in the same position
match.

Match: subject(X, cs) = subject(eva, cs)
No Match: subject(eva, cs) = subject(X, X)

Nebel, Lindner, Engesser – MAS 14 / 24

Proof Search: Example I

student(eva).
student(hans).
subject(eva, cs).
subject(eva, phil).
subject(hans, phil).
logician(X) :- subject(X, cs).
logician(X) :- subject(X, phil).
double_logician(X) :- subject(X, cs), subject(X, phil).

Query: ?- student(X).
Prolog checks for facts that match the query starting from
the top of the knowledge base (yep, order matters).
The procedure finds two matching facts. Typing ; forces
Prolog to search for more possibilities.

Nebel, Lindner, Engesser – MAS 15 / 24

Proof Search: Example II

student(eva).
student(hans).
subject(eva, cs).
subject(eva, phil).
subject(hans, phil).
logician(X) :- subject(X, cs).
logician(X) :- subject(X, phil).
double_logician(X) :- subject(X, cs), subject(X, phil).

Query: ?- double_logician(X).
Matches with double_logician(X) :- subject(X, cs),
subject(X, phil).
What if the two subgoals in the body changed position?

Nebel, Lindner, Engesser – MAS 16 / 24

Cut !

! is a goal that always succeeds and which blocks
backtracking. Compare ?- double_logician(X). for these two
programs:

student(eva).
student(hans).
subject(hans, cs).
subject(eva, cs).
subject(eva, phil).
double_logician(X) :- subject(X,
cs), !, subject(X, phil).

student(eva).
student(hans).
subject(eva, cs).
subject(hans, cs).
subject(eva, phil).
double_logician(X) :- subject(X,
cs), !, subject(X, phil).

Nebel, Lindner, Engesser – MAS 17 / 24

Some more Notes

Only positive facts are allowed, and no disjunctive facts.
Negation is allowed in the body of a rule.

Negation as Failure: the goal not(b) is true if b cannot be
proven true.
Thus the program a :- not(b). means: if b cannot be proven,
then a is true.

Disjunction is allowed in the body of a rule.
Program a :- b;c. is equal to a :- b. a :- c.

Proves may not terminate: a :- b. b :- a.
Prolog has inbuilt arithemtics: X is 1, Y is X + 3.
Prolog lacks a model-theoretic semantics, often feels rather
procedural, is a Turing-complete programming language.

Nebel, Lindner, Engesser – MAS 18 / 24

Lists

Prolog comes with a very powerful mechanism for list
processing.
Lists are a special kind of Prolog terms.
The empty list: []
Non-empty list: .(Head, Tail)

Head is an atom, a variable, a complex term, a number, or a
list
Tail is either the empty list or a non-empty list of the form
.(Head, Tail)

Nebel, Lindner, Engesser – MAS 19 / 24

Lists: Examples

.(a, []): List with one element a

.(a, .(b, [])): List with two elements a, b

.(.(a, []), .(b, [])): List with two elements: First being the
singleton list containing a, the other one being the singleton
list containing b

Nebel, Lindner, Engesser – MAS 20 / 24

Lists: Notation

.(a, Tail) = [a | Tail]

.(a, .(b, Tail)) = [a, b | Tail]

.(a, .(b, .(c, []))) = [a, b, c]

.(.(a, []), .(b, [])) = [[a], [b]]

Nebel, Lindner, Engesser – MAS 21 / 24

Lists: Example I

trans([], []).
trans([a | T1], [b | T2]) :- trans(T1, T2).

?- trans([a, a], X).
–> Proof tree at the blackboard.
Works in both directions!

Nebel, Lindner, Engesser – MAS 22 / 24

Lists: Example II

element_of(X, [X | Tail]).
element_of(X, [_ | Tail]) :- element_of(X, Tail).

?- element_of(b, [a, b, c]).
In SWI-Prolog you can also use the inbuilt predicate
member/2.
Try: Get all numbers smaller than 5.
Try: Get all lists, of which 3 is a member.
Try: Is 7 a member of a given list?

Nebel, Lindner, Engesser – MAS 23 / 24

Final Practical Notes

SWI-Prolog: http://www.swi-prolog.org

Start program from command line: swipl -s <file> -g
<query> -t halt.
Collecting all answers to a query in a list: Findall/3.
Output to command line: writeln/1

Nebel, Lindner, Engesser – MAS 24 / 24

http://www.swi-prolog.org

