Multi-Agent Systems
 Multi-Agent Path Finding

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
Winter Term 2018/19

Agents moving in a spatial environment

A central problem in many applications is the coordinated movement of agents/robots/vehicles in a given spatial environment.

Logistic robots (KARIS)

Airport ground traffic control (atrics)

Multi-agent path finding (MAPF)

MAPF Variations
MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)

Given a set of agents A, an undirected, simple graph $G=(V, E)$, an initial state modelled by an injective function $\alpha_{0}: A \rightarrow V$, and a goal state modelled by another injective function α_{*}, can α_{0} be transformed into α_{*} by movements of single agents without collisions?

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)

Given a set of agents A, an undirected, simple graph $G=(V, E)$, an initial state modelled by an injective function $\alpha_{0}: A \rightarrow V$, and a goal state modelled by another injective function α_{*}, can α_{0} be transformed into α_{*} by movements of single agents without collisions?

- Existence problem: Does there exist a successful sequence of movements (= plan)?

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)

Given a set of agents A, an undirected, simple graph $G=(V, E)$, an initial state modelled by an injective function $\alpha_{0}: A \rightarrow V$, and a goal state modelled by another injective function α_{*}, can α_{0} be transformed into α_{*} by movements of single agents without collisions?

- Existence problem: Does there exist a successful sequence of movements (= plan)?
- Bounded existence problem: Does there exist a plan of a given length k or less?

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)

Given a set of agents A, an undirected, simple graph $G=(V, E)$, an initial state modelled by an injective function $\alpha_{0}: A \rightarrow V$, and a goal state modelled by another injective function α_{*}, can α_{0} be transformed into α_{*} by movements of single agents without collisions?

- Existence problem: Does there exist a successful sequence of movements (= plan)?
- Bounded existence problem: Does there exist a plan of a given length k or less?
- Plan generation problem: Generate a plan.

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)

Given a set of agents A, an undirected, simple graph $G=(V, E)$, an initial state modelled by an injective function $\alpha_{0}: A \rightarrow V$, and a goal state modelled by another injective function α_{*}, can α_{0} be transformed into α_{*} by movements of single agents without collisions?

- Existence problem: Does there exist a successful sequence of movements (= plan)?
- Bounded existence problem: Does there exist a plan of a given length k or less?
- Plan generation problem: Generate a plan.
- Optimal plan generation problem: Generate a shortest plan.

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook

Literature

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Plan:

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Plan: $\left(C, v_{3}, v_{2}\right)$,

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Plan: $\left(C, v_{3}, v_{2}\right)$,

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Plan: $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$,

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Plan: $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$,

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

$G=(V, E)$ with $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$
$A=\{S, C\}$ and $\alpha_{0}(S)=v_{1}, \alpha_{0}(C)=v_{3}, \alpha_{*}(S)=v_{3}, \alpha_{*}(C)=v_{2}$

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU

MIAPF Variations

Summary \&
Outlook
Literature

Plan: $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right)$,

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

$G=(V, E)$ with $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$
$A=\{S, C\}$ and $\alpha_{0}(S)=v_{1}, \alpha_{0}(C)=v_{3}, \alpha_{*}(S)=v_{3}, \alpha_{*}(C)=v_{2}$

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU

MIAPF Variations

Summary \&
Outlook
Literature

Plan: $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right)$,

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
$G=(V, E)$ with $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$
$A=\{S, C\}$ and $\alpha_{0}(S)=v_{1}, \alpha_{0}(C)=v_{3}, \alpha_{*}(S)=v_{3}, \alpha_{*}(C)=v_{2}$

Plan: $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right)$,

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
$G=(V, E)$ with $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$
$A=\{S, C\}$ and $\alpha_{0}(S)=v_{1}, \alpha_{0}(C)=v_{3}, \alpha_{*}(S)=v_{3}, \alpha_{*}(C)=v_{2}$

Plan: $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right)$,

Example

Can we find a (central) plan to move the square robot S to v_{3} and the circle robot C to v_{2} ?

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Plan: $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)$.

1	2	3	4
12	13	14	5
11		15	6
10	9	8	7

MAPF Variations

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature
Pictures from Wikipedia article on 15-Puzzle

MAPF
Definition and example

MAPF Variations
MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature
Pictures from Wikipedia article on 15-Puzzle

Lecture plan

Motivation
MAPF
Definition and example
MAPF Variations

- MAPF: variations, algorithms, complexity
- Distributed MAPF (each agent plans on it own): DMAPF
- Distributed MAPF with destination uncertainty: MAPF/DU

MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Sequential MAPF

- Sequential MAPF (or pebble motion on a graph) allows only one agent to move per time step.
- An agent $a \in A$ can move in one step from $s \in V$ to $t \in V$ transforming α to α^{\prime}, if
$\square \alpha(a)=s$,
$\square\langle s, t\rangle \in E$,
- there is no agent b such that $\alpha(b)=t$.
\square In this case, α^{\prime} is determined as follows:
- $\alpha^{\prime}(a)=t$,
- for all agents $b \neq a: \alpha(b)=\alpha^{\prime}(b)$,
- One usually wants to minimize the number of single movements (= sum-of-cost over all agents)

Parallel MAPF

- Parallel MAPF allows many agents to move in parallel, provided they do not collide.
- Two models:
- Parallel: A chain of agents can move provided the first agent can move on a an unoccupied vertex.
- Parallel with rotations: A closed cycle in move synchronously.
- In both cases, one is usually interested in the number of

MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature parallel steps (= make-span).

- However, also the sum-of-cost is sometimes considered.

Anonymous MAPF

- There is a set of agents and a set of targets (of the same cardinality as the agent set).
- Each target must be reached by one agent.
- This means one first has to assign a target and then to
- Interestingly, the problem as a whole is easier to solve (using flow-based techniques).

Types of MAPF algorithms

- A^{*}-based algorithm (optimal)

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A
BIBOX
Computational
Complextiy of MAPF

Distributed MAPF

MAPF/DU

Summary \&
Outlook
Literature

Types of MAPF algorithms

- A*-based algorithm (optimal)
- Conflict-based search (optimal)

MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A
BIBOX
Computational
Complextiy of MAPF

Distributed MAPF

MAPF/DU

Summary \&
Outlook
Literature

Types of MAPF algorithms

- A*-based algorithm (optimal)
- Conflict-based search (optimal)
- Reduction-based approaches: Translate MAPF to SAT, ASP or to a CSP (usually optimal)

MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Types of MAPF algorithms

- A*-based algorithm (optimal)
- Conflict-based search (optimal)
- Reduction-based approaches: Translate MAPF to SAT, ASP or to a CSP (usually optimal)
- Suboptimal search-based algorithms (may even be incomplete): Cooperative A* (CA*), Hierarchical Cooperative $A^{*}\left(\mathrm{HCA}^{*}\right)$ and Windowed HCA* (WHCA*).

Types of MAPF algorithms

- A*-based algorithm (optimal)
- Conflict-based search (optimal)
- Reduction-based approaches: Translate MAPF to SAT, ASP or to a CSP (usually optimal)
- Suboptimal search-based algorithms (may even be incomplete): Cooperative A* (CA*), Hierarchical Cooperative $A^{*}\left(\mathrm{HCA}^{*}\right)$ and Windowed HCA* (WHCA*).
- Rule-based algorithms: Kornhauser's algorithm, Push-and-Rotate, BIBOX, ... (complete on a given class of graphs, but suboptimal)

MAPF

Definition and
example
MAPF Variations
MAPF Algorithms
A'-based
algorithm
Cooperative A

BIBOX

Computational
Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \& Outlook

Literature

A*-based algorithm

- Define state space:
- A state is an assignment of agents to vertices (modelled by a function α)
- There is a transition from one state α to α^{\prime} iff there is a legal move from α to α^{\prime} according to the appropriate semantics (sequential, parallel, or parallel with rotations)
- Search in this state space using the A^{*} algorithm.
- Possible heuristic estimator: Sum or maximum over the length of the individual movement plans (ignoring other agents).
- Problem: Large branching factor because of many agents

Definition and example
MAPF Variations
MAPF Algorithms

A^{*}-based

algorithm
Cooperative A
BIBOX
Computational
Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \& that can move.

Example: State space for A* algorithm

MAPF Variations

MAPF Algorithms
A*-based algorithm

Convention: Function α is represented by $\langle\alpha(S), \alpha(C)\rangle$

Example: State space for A* algorithm

MAPF Variations

MAPF Algorithms
A*-based algorithm

Convention: Function α is represented by $\langle\alpha(S), \alpha(C)\rangle$ Question: How many states?

Example: State space for A* algorithm

Motivation

MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A*-based algorithm

Convention: Function α is represented by $\langle\alpha(S), \alpha(C)\rangle$ Question: How many states?

Cooperative A

Computational
Complextiy of MAPF

Distributed MAPF

MAPF/DU

Summary \&
Outlook

Literature

Example: State space for A^{*} algorithm

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A*-based algorithm

Convention: Function α is represented by $\langle\alpha(S), \alpha(C)\rangle$ Question: How many states?

Question: Heuristic value for states $\left\langle v_{1}, v_{2}\right\rangle$ and $\left\langle v_{2}, v_{3}\right\rangle$ under the sum-aggregation?

Problems with A^{*} on MAPF state space:

MAPF Variations

MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of MAPF

Distributed MAPF

MAPF/DU

Summary \&
Outlook
Literature

Problems with A^{*} on MAPF state space:

- super-exponential state space

MAPF Variations

MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of MAPF

Distributed
MAPF
MAPF/DU

Summary \&
Outlook
Literature

- Problems with A^{*} on MAPF state space:
- super-exponential state space, i.e., m !/($m-n$)! with m nodes and n agents;

MAPF Variations

MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational Complextiy of MAPF

Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

- Problems with A^{*} on MAPF state space:
- super-exponential state space, i.e., m !/($m-n$)! with m nodes and n agents;

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational Complextiy of MAPF

Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

- Problems with A^{*} on MAPF state space:
- super-exponential state space, i.e., m !/($m-n$)! with m nodes and n agents;
- huge branching factor: $n \times d$ for sequential and d^{n} for parallel MAPF for graphs with maximal degree d.
- Problems with A^{*} on MAPF state space:
- super-exponential state space, i.e., m !/($m-n$)! with m nodes and n agents;
- huge branching factor: $n \times d$ for sequential and d^{n} for parallel MAPF for graphs with maximal degree d.
- CA*: Decoupled planning in space \& time
- Problems with A^{*} on MAPF state space:

■ super-exponential state space, i.e., m !/($m-n$)! with m nodes and n agents;

- huge branching factor: $n \times d$ for sequential and d^{n} for parallel MAPF for graphs with maximal degree d.
- CA*: Decoupled planning in space \& time
- Order agents linearly and then plan for each agent separately a (shortest) path.
- Problems with A^{*} on MAPF state space:
- super-exponential state space, i.e., m !/($m-n$)! with m nodes and n agents;
- huge branching factor: $n \times d$ for sequential and d^{n} for parallel MAPF for graphs with maximal degree d.
- CA*: Decoupled planning in space \& time
- Order agents linearly and then plan for each agent separately a (shortest) path.
- Store each path in a reservation table, which stores for each node at which time point it is occupied.
- Problems with A^{*} on MAPF state space:
- super-exponential state space, i.e., m !/($m-n$)! with m nodes and n agents;
- huge branching factor: $n \times d$ for sequential and d^{n} for parallel MAPF for graphs with maximal degree d.
- CA*: Decoupled planning in space \& time
- Order agents linearly and then plan for each agent separately a (shortest) path.
- Store each path in a reservation table, which stores for each node at which time point it is occupied.
- When planning, take the reservation table into account and avoid nodes at time points, when they are reserved for other agents; wait action is possible.
- Problems with A^{*} on MAPF state space:
- super-exponential state space, i.e., m !/($m-n$)! with m nodes and n agents;
- huge branching factor: $n \times d$ for sequential and d^{n} for parallel MAPF for graphs with maximal degree d.
- CA*: Decoupled planning in space \& time
- Order agents linearly and then plan for each agent separately a (shortest) path.
- Store each path in a reservation table, which stores for each node at which time point it is occupied.
- When planning, take the reservation table into account and avoid nodes at time points, when they are reserved for other agents; wait action is possible.

MAPF

Definition and
example
MAPF Variations
MAPF Algorithms

A^{\prime}-based

algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed

- Solvability depends on chosen order.
- Problems with A^{*} on MAPF state space:
- super-exponential state space, i.e., m !/($m-n$)! with m nodes and n agents;
- huge branching factor: $n \times d$ for sequential and d^{n} for parallel MAPF for graphs with maximal degree d.
- CA*: Decoupled planning in space \& time
- Order agents linearly and then plan for each agent separately a (shortest) path.
- Store each path in a reservation table, which stores for each node at which time point it is occupied.
- When planning, take the reservation table into account and avoid nodes at time points, when they are reserved for other agents; wait action is possible.

Motivation

MAPF

Definition and
example
MAPF Variations
MAPF Algorithms

A^{\prime}-based

algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed

Summary \&
\square Solvability depends on chosen order.

- Our small example is not solvable with this method!

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{*}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of MAPF

Distributed
MAPF
MAPF/DU

Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$

MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of MAPF

Distributed MAPF

MAPF/DU

Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C :
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right)$

MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU

Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, V_{3}, V_{2}\right)$
- Reservation table: (0: v_{1}), ($0: v_{3}$)

MAPF Variations

MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU

Summary \&
Outlook

Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, V_{3}, V_{2}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right)$

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right)$

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{4}\right)$

MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{4}\right)$
- Plan for S:
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{5}\right)$

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{4}\right)$
- Plan for S: wait
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{5}\right)$

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A' $^{\prime}$-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{4}\right)$
- Plan for S: wait
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{5}\right)$, (1: v_{1})

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A' $^{\prime}$-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{4}\right)$
- Plan for S : wait, $\left(S, v_{1}, v_{2}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{5}\right)$, (1: v_{1})

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A'-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{4}\right)$
- Plan for S : wait, $\left(S, v_{1}, v_{2}\right)$
- Reservation table: ($0: v_{1}$), ($0: v_{3}$), ($1: v_{2}$), ($2-n: v_{5}$), (1: $\left.v_{1}\right),\left(2: v_{2}\right)$

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A' $^{\prime}$-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{4}\right)$
- Plan for S : wait, $\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right)$
- Reservation table: ($0: v_{1}$), ($0: v_{3}$), ($1: v_{2}$), ($2-n: v_{5}$), (1: $\left.v_{1}\right),\left(2: v_{2}\right)$

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A' $^{\prime}$-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for C : $\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{4}\right)$
- Plan for S : wait, $\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{5}\right)$, (1: v_{1}), (2: v_{2}), (3-n: $\left.v_{3}\right)$

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A' $^{\prime}$-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Example CA* run

- Linear order: $\langle C, S\rangle$
- Plan for $C:\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{4}\right)$
- Plan for S : wait, $\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right)$
- Reservation table: $\left(0: v_{1}\right),\left(0: v_{3}\right),\left(1: v_{2}\right),\left(2-n: v_{5}\right)$, (1: v_{1}), (2: v_{2}), (3-n: v_{3})

■ Not solvable with different order!

BIBOX is a rule-based algorithm that is complete on all bi-connected graphs with at least two unoccupied nodes in the graph.

Definition

MAPF

Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A
BIBOX
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook

Loop decomposition

Every bi-connected graph can be constructed from a cycle by adding loops iteratively.

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Loop decomposition

Every bi-connected graph can be constructed from a cycle by adding loops iteratively.

MAPF Algorithms
A *-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of MAPF

Distributed
MAPF
MAPF/DU

Summary \&
Outlook
Literature

Loop decomposition

Every bi-connected graph can be constructed from a cycle by adding loops iteratively.

Definition and
example
MAPF Variations
MAPF Algorithms
A'-based
algorithm
Cooperative A^{*}
BIBOX
Computationa
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Loop decomposition

Every bi-connected graph can be constructed from a cycle by adding loops iteratively.

Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A
BIBOX
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
A loop decomposition into a basic cycle and additional loops can be done in time $O\left(|V|^{2}\right)$.

Summary \& Outlook

Loop decomposition

Every bi-connected graph can be constructed from a cycle by adding loops iteratively.

A loop decomposition into a basic cycle and additional loops can be done in time $O\left(|V|^{2}\right)$.
Let us name them $C_{0}, L_{1}, L_{2}, \ldots$, where the index depends on the time when the loop is added.

Moving unoccupied nodes and agents around

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Moving unoccupied nodes and agents around

- An unoccupied place can be sent to any node.

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

Moving unoccupied nodes and agents around

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF

- An unoccupied place can be sent to any node.

Distributed MAPF

Moving unoccupied nodes and agents around

- An unoccupied place can be sent to any node.
- This can be done without disturbing loops with a higher index than the one the agent starts and finishes in.

Filling loops

- Starting with highest-index loop: Move agents to destination loop, then shift agents to their destinations.
- Special case: When agents are already in the destination loop, they have to be rotated out of the loop.

Filling loops

- Starting with highest-index loop: Move agents to destination loop, then shift agents to their destinations.
- Special case: When agents are already in the destination loop, they have to be rotated out of the loop.

Filling loops

- Starting with highest-index loop: Move agents to destination loop, then shift agents to their destinations.
- Special case: When agents are already in the destination loop, they have to be rotated out of the loop.

Filling loops

- Starting with highest-index loop: Move agents to destination loop, then shift agents to their destinations.
- Special case: When agents are already in the destination loop, they have to be rotated out of the loop.

Filling loops

- Starting with highest-index loop: Move agents to destination loop, then shift agents to their destinations.
- Special case: When agents are already in the destination loop, they have to be rotated out of the loop.

MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook

Filling loops

- Starting with highest-index loop: Move agents to destination loop, then shift agents to their destinations.
- Special case: When agents are already in the destination loop, they have to be rotated out of the loop.

A^{\prime}-based

algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook

Filling loops

- Starting with highest-index loop: Move agents to destination loop, then shift agents to their destinations.
- Special case: When agents are already in the destination loop, they have to be rotated out of the loop.

- When done with one loop, repeat for next one with next lower index.

Reordering agents in the cycle

- Assumption: The destinations for the empty places are in the cycle C_{0} (can be relaxed).
- If the agents are in the right order, just rotate them to their destinations.
- Otherwise reorder by successively take one out and re-insert.

Runtime and plan length estimation

- Moving an empty place around is in $O(|V|)$ steps.

MAPF

Definition and
example
MAPF Variations
MAPF Algorithms
A^{*}-based
algorithm
Cooperative A
BIBOX
Computational
Complextiy of MAPF

Distributed MAPF

MAPF/DU

Summary \&
Outlook
Literature

Runtime and plan length estimation

- Moving an empty place around is in $O(|V|)$ steps.
- Moving one agent to an arbitrary position can be done in $O\left(|V|^{2}\right)$ steps.

MAPF

Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A^{*}
BIBOX
Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Runtime and plan length estimation

- Moving an empty place around is in $O(|V|)$ steps.
- Moving one agent to an arbitrary position can be done in $O\left(|V|^{2}\right)$ steps.
- Moving one agent to its final destination in a loop needs $O\left(|V|^{2}\right)$.

Runtime and plan length estimation

- Moving an empty place around is in $O(|V|)$ steps.
- Moving one agent to an arbitrary position can be done in $O\left(|V|^{2}\right)$ steps.
- Moving one agent to its final destination in a loop needs $O\left(|V|^{2}\right)$.
- Since this has to be done $O(|V|)$ times, we need overall $O\left(|V|^{3}\right)$ steps.

Runtime and plan length estimation

- Moving an empty place around is in $O(|V|)$ steps.
- Moving one agent to an arbitrary position can be done in $O\left(|V|^{2}\right)$ steps.
- Moving one agent to its final destination in a loop needs $O\left(|V|^{2}\right)$.
- Since this has to be done $O(|V|)$ times, we need overall $O\left(|V|^{3}\right)$ steps.
- Reordering in the final cycle is also bounded by $O\left(|V|^{3}\right)$.

MAPF

Definition and
example
MAPF Variations
MAPF Algorithms
A^{\prime}-based
algorithm
Cooperative A

BIBOX

Computational
Complextiy of
MAPF
Distributed
MAPF
MAPF/DU
Summary \&
Outlook
Literature

Runtime and plan length estimation

- Moving an empty place around is in $O(|V|)$ steps.
- Moving one agent to an arbitrary position can be done in $O\left(|V|^{2}\right)$ steps.
- Moving one agent to its final destination in a loop needs $O\left(|V|^{2}\right)$.
- Since this has to be done $O(|V|)$ times, we need overall $O\left(|V|^{3}\right)$ steps.
- Reordering in the final cycle is also bounded by $O\left(|V|^{3}\right)$.
\rightarrow Runtime and number of steps is bounded by $O\left(|V|^{3}\right)$.

Computational Complexity of MAPF

- Existence: For arbitrary graphs with at least one empty place, the problem is polynomial $\left(O\left(|V|^{3}\right)\right.$ using Kornhauser's algorithm). For BIBOX on bi-connected with at least two empty places also cubic, but smaller constant.

Computational Complexity of MAPF

- Existence: For arbitrary graphs with at least one empty place, the problem is polynomial $\left(O\left(|V|^{3}\right)\right.$ using Kornhauser's algorithm). For BIBOX on bi-connected with at least two empty places also cubic, but smaller constant.
- Generation: $O\left(|V|^{3}\right)$, generating the same number of steps, again using Kornhauser's algorithm or BIBOX (on a smaller instance set).

Computational Complexity of MAPF

- Existence: For arbitrary graphs with at least one empty place, the problem is polynomial $\left(O\left(|V|^{3}\right)\right.$ using Kornhauser's algorithm). For BIBOX on bi-connected with at least two empty places also cubic, but smaller constant.
- Generation: $O\left(|V|^{3}\right)$, generating the same number of steps, again using Kornhauser's algorithm or BIBOX (on a smaller instance set).
- Bounded existence: Is definitely in NP

Computational Complexity of MAPF

- Existence: For arbitrary graphs with at least one empty place, the problem is polynomial $\left(O\left(|V|^{3}\right)\right.$ using Kornhauser's algorithm). For BIBOX on bi-connected with at least two empty places also cubic, but smaller constant.
- Generation: $O\left(|V|^{3}\right)$, generating the same number of steps, again using Kornhauser's algorithm or BIBOX (on a smaller instance set).
- Bounded existence: Is definitely in NP
- If there exists a solution, then it is polynomially bounded.

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
Computational
Complextiy of MAPF

Distributed MAPF

Computational Complexity of MAPF

- Existence: For arbitrary graphs with at least one empty place, the problem is polynomial $\left(O\left(|V|^{3}\right)\right.$ using Kornhauser's algorithm). For BIBOX on bi-connected with at least two empty places also cubic, but smaller constant.
- Generation: $O\left(|V|^{3}\right)$, generating the same number of steps, again using Kornhauser's algorithm or BIBOX (on a smaller instance set).
- Bounded existence: Is definitely in NP
- If there exists a solution, then it is polynomially bounded.
- A solution candidate can be checked in polynomial time for satisfying the conditions of being a movement plan with k of steps or less.

Computational Complexity of MAPF

- Existence: For arbitrary graphs with at least one empty place, the problem is polynomial $\left(O\left(|V|^{3}\right)\right.$ using Kornhauser's algorithm). For BIBOX on bi-connected with at least two empty places also cubic, but smaller constant.
\square Generation: $O\left(|V|^{3}\right)$, generating the same number of steps, again using Kornhauser's algorithm or BIBOX (on a smaller instance set).
- Bounded existence: Is definitely in NP
- If there exists a solution, then it is polynomially bounded.
- A solution candidate can be checked in polynomial time for satisfying the conditions of being a movement plan with k of steps or less.

■ Question: Is the problem also NP-hard?

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)

Given a set of elements U and a collection of subsets $C=\left\{s_{j}\right\}$ with $s_{j} \subseteq U$ and $\left|s_{j}\right|=3$. Is there a sub-collection of subsets $C^{\prime} \subseteq C$ such that $\bigcup_{s \in C^{\prime}} S=U$ and all subsets in C^{\prime} are pairwise disjoint, i.e., $s_{a} \cap s_{b}=\emptyset$ for each $s_{a}, s_{b} \in C^{\prime}$ with $s_{a} \neq s_{b}$?

MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
Computational Complextiy of MAPF

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)

Given a set of elements U and a collection of subsets $C=\left\{s_{j}\right\}$ with $s_{j} \subseteq U$ and $\left|s_{j}\right|=3$. Is there a sub-collection of subsets $C^{\prime} \subseteq C$ such that $\bigcup_{s \in C^{\prime}} S=U$ and all subsets in C^{\prime} are pairwise disjoint, i.e., $s_{a} \cap s_{b}=\emptyset$ for each $s_{a}, s_{b} \in C^{\prime}$ with $s_{a} \neq s_{b}$?

X3C is NP-complete.

MAPF

Definition and
example
MAPF Variations
MAPF Algorithms
Computational Complextiy of MAPF

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)

Given a set of elements U and a collection of subsets $C=\left\{s_{j}\right\}$ with $s_{j} \subseteq U$ and $\left|s_{j}\right|=3$. Is there a sub-collection of subsets $C^{\prime} \subseteq C$ such that $\bigcup_{s \in C^{\prime}} \mathcal{S}=U$ and all subsets in C^{\prime} are pairwise disjoint, i.e., $s_{a} \cap s_{b}=\emptyset$ for each $s_{a}, s_{b} \in C^{\prime}$ with $s_{a} \neq s_{b}$?

X3C is NP-complete.

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)

Given a set of elements U and a collection of subsets $C=\left\{s_{j}\right\}$ with $s_{j} \subseteq U$ and $\left|s_{j}\right|=3$. Is there a sub-collection of subsets $C^{\prime} \subseteq C$ such that $\bigcup_{s \in C^{\prime}} \mathcal{S}=U$ and all subsets in C^{\prime} are pairwise disjoint, i.e., $s_{a} \cap s_{b}=\emptyset$ for each $s_{a}, s_{b} \in C^{\prime}$ with $s_{a} \neq s_{b}$?

X3C is NP-complete.

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
Computational
Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)

Given a set of elements U and a collection of subsets $C=\left\{s_{j}\right\}$ with $s_{j} \subseteq U$ and $\left|s_{j}\right|=3$. Is there a sub-collection of subsets $C^{\prime} \subseteq C$ such that $\bigcup_{s \in C^{\prime}} S=U$ and all subsets in C^{\prime} are pairwise disjoint, i.e., $s_{a} \cap s_{b}=\emptyset$ for each $s_{a}, s_{b} \in C^{\prime}$ with $s_{a} \neq s_{b}$?

X3C is NP-complete.

Motivation

MAPF

Definition and
example
MAPF Variations
MAPF Algorithms
Computational Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)

Given a set of elements U and a collection of subsets $C=\left\{s_{j}\right\}$ with $s_{j} \subseteq U$ and $\left|s_{j}\right|=3$. Is there a sub-collection of subsets $C^{\prime} \subseteq C$ such that $\bigcup_{s \in C^{\prime}} S=U$ and all subsets in C^{\prime} are pairwise disjoint, i.e., $s_{a} \cap s_{b}=\emptyset$ for each $s_{a}, s_{b} \in C^{\prime}$ with $s_{a} \neq s_{b}$?

X3C is NP-complete.

MAPF

Definition and example
MAPF Variations
MAPF Algorithms
Computational Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)

Given a set of elements U and a collection of subsets $C=\left\{s_{j}\right\}$ with $s_{j} \subseteq U$ and $\left|s_{j}\right|=3$. Is there a sub-collection of subsets $C^{\prime} \subseteq C$ such that $\bigcup_{s \in C^{\prime}} S=U$ and all subsets in C^{\prime} are pairwise disjoint, i.e., $s_{a} \cap s_{b}=\emptyset$ for each $s_{a}, s_{b} \in C^{\prime}$ with $s_{a} \neq s_{b}$?

X3C is NP-complete.

MAPF

Definition and example
MAPF Variations
MAPF Algorithms
Computational Complextiy of MAPF

Distributed MAPF

$$
C=\{\{1,2,3\},\{2,3,4\},\{2,5,6\},\{1,5,6\}\}
$$

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
Computational
Complextiy of
MAPF
Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

NP-hardness of MAPF: Reduction from X3C

$$
C=\{\{1,2,3\},\{2,3,4\},\{2,5,6\},\{1,5,6\}\}
$$

MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
Computational Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

NP-hardness of MAPF: Reduction from X3C

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
Computational Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook

Literature

NP-hardness of MAPF: Reduction from X3C

$$
C=\{\{1,2,3\},\{2,3,4\},\{2,5,6\},\{1,5,6\}\}
$$

MAPF Variations

MAPF Algorithms
Computationa Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook

Literature

NP-hardness of MAPF: Reduction from X3C

$$
C=\{\{1,2,3\},\{2,3,4\},\{2,5,6\},\{1,5,6\}\}
$$

MAPF Variations

MAPF Algorithms
Computationa Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook

Literature

Motivation
MAPF
Definition and
example
MAPF Variations
MAPF Algorithms
Computational Complextiy of MAPF

Distributed MAPF

MAPF/DU
Summary \&
Outlook
Literature

NP-hardness of MAPF: Reduction from X3C

$$
C=\{\{1,2,3\},\{2,3,4\},\{2,5,6\},\{1,5,6\}\}
$$

Claim: There is an exact cover by 3 -sets iff the constructed MAPF instance can be solved in at most $k=11 / 3|U|$ moves.

Distributed MAPF

Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Going beyond MAPF

- In MAPF, planning is performed centrally, then the plan is communicated to all agents and execution is done decentrally.

Going beyond MAPF

- In MAPF, planning is performed centrally, then the plan is communicated to all agents and execution is done decentrally.
- What if there is no central instance and communication of plans is impossible?

Going beyond MAPF

- In MAPF, planning is performed centrally, then the plan is communicated to all agents and execution is done decentrally.
- What if there is no central instance and communication of plans is impossible?
- In this setting, which we call DMAPF, we assume that everybody wants to achieve the common goal of reaching all destinations.

Going beyond MAPF

- In MAPF, planning is performed centrally, then the plan is communicated to all agents and execution is done decentrally.
- What if there is no central instance and communication of plans is impossible?
- In this setting, which we call DMAPF, we assume that everybody wants to achieve the common goal of reaching all destinations.
\rightarrow Each agent needs to plan decentrally.

Going beyond MAPF

- In MAPF, planning is performed centrally, then the plan is communicated to all agents and execution is done decentrally.
- What if there is no central instance and communication of plans is impossible?
- In this setting, which we call DMAPF, we assume that everybody wants to achieve the common goal of reaching all destinations.
\rightarrow Each agent needs to plan decentrally.
\Rightarrow What kind of plans do we need to generate?

Going beyond MAPF

- In MAPF, planning is performed centrally, then the plan is communicated to all agents and execution is done decentrally.
- What if there is no central instance and communication of plans is impossible?
- In this setting, which we call DMAPF, we assume that everybody wants to achieve the common goal of reaching all destinations.
\rightarrow Each agent needs to plan decentrally.
\Rightarrow What kind of plans do we need to generate?
\Rightarrow How do we define the joint execution of such plans?

Implicitly coordinated plans (in a cooperative setting)

Motivation

MAPF

Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Implicitly coordinated plans (in a cooperative setting)

An agent plans its own actions ... common goal.

Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Implicitly coordinated plans (in a cooperative setting)

An agent plans its own actions ... common goal.

- This implies to plan for the other agents.

Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Implicitly coordinated plans (in a cooperative setting)

- An agent plans its own actions ...

Implicitly coordinated plans (in a cooperative setting)

- An agent plans its own actions ...

Implicitly coordinated plans (in a cooperative setting)

- An agent plans its own actions ... i.e., a state from which the other agents cannot reach the common goal.

Implicitly coordinated plans (in a cooperative setting)

- An agent plans its own actions ...
- ... in a way to empower the other agents to reach the common goal.
- This implies to plan for the other agents.
- We consider one possibility for the other agent to continue the plan, i.e., the plan will be a linear plan.
- We assume that plans are non-redundant, i.e., that they are cycle-free.
- Executing such a plan will thus never lead to a dead end, i.e., a state from which the other agents cannot reach the common goal.
- However, almost certainly, agents will come up with different (perhaps conflicting) plans.

Implicitly coordinated plans (in a cooperative setting)

- An agent plans its own actions ...
- ... in a way to empower the other agents to reach the common goal.
- This implies to plan for the other agents.
- We consider one possibility for the other agent to continue the plan, i.e., the plan will be a linear plan.
\square We assume that plans are non-redundant, i.e., that they are cycle-free.
- Executing such a plan will thus never lead to a dead end, i.e., a state from which the other agents cannot reach the common goal.
- However, almost certainly, agents will come up with different (perhaps conflicting) plans.
- How do we define joint execution of such conflicting plans?

Example: Two implicitly coordinated plans

Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning

Summary 8
Outlook
Literature

Example: Two implicitly coordinated plans

Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
How to solve the problem?

Example: Two implicitly coordinated plans

Motivation
MAPF

Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning

Example: Two implicitly coordinated plans

Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning

$$
\begin{aligned}
\pi_{C}= & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
\pi_{S}= & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle
\end{aligned}
$$

Joint execution

- Let us assume, all agents have planed and a subset of them came up with a family of plans $\left(\pi_{i}\right)_{i \in A}$.
- Among the agents that have a plan with their own action as the next action to execute, one is chosen.
- The action of the chosen agent is executed.
- Agents, which have anticipated the action, track that in their plans.
- All other agents have to replan from the new state.
- Since everybody has a successful plan, no acting agent will ever execute an action that leads to a dead end.

Example execution

Planning, executing, and replanning:

Example execution

Planning, executing, and replanning:

$$
C:\left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
$$

Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU
Summary \& Outlook

Literature

Example execution

Planning, executing, and replanning:

Motivation
MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example execution

Planning, executing, and replanning:

Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example execution

Planning, executing, and replanning:

Motivation
MAPF
Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example execution

Planning, executing, and replanning:

Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example execution

Planning, executing, and replanning:
Motivation
MAPF
Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Planning, executing, and replanning:
Motivation
MAPF
Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Planning, executing, and replanning:
Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Planning, executing, and replanning:
Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Planning, executing, and replanning:
Motivation
MAPF
Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Planning, executing, and replanning:
Motivation
MAPF
Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Planning, executing, and replanning:
Motivation
MAPF
Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Planning, executing, and replanning:
Motivation
MAPF
Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Example execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example execution

Planning, executing, and replanning:
Motivation
MAPF
Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative
replanning
MAPF/DU

$$
\begin{aligned}
C: & \left\langle\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle \\
S: & \left\langle\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{4}\right),\left(C, v_{3}, v_{2}\right),\left(C, v_{2}, v_{1}\right),\left(S, v_{4}, v_{2}\right),\right. \\
& \left.\left(S, v_{2}, v_{3}\right),\left(C, v_{1}, v_{2}\right)\right\rangle \\
C: & \left\langle\left(C, v_{2}, v_{4}\right),\left(S, v_{1}, v_{2}\right),\left(S, v_{2}, v_{3}\right),\left(C, v_{4}, v_{2}\right)\right\rangle
\end{aligned}
$$

Done!

Lazy and eager agents

What can go wrong?

Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Lazy and eager agents

What can go wrong?

- Agents could be lazy: Sometimes they choose a plan where they expect that another agent should act, although they could act.
\rightarrow Agents may wait forever for each other to act (dish washing dilemma).

Lazy and eager agents

What can go wrong?

Motivation
MAPF

Distributed
MAPF
Implicit coordination
Joint execution
Agent types
\rightarrow Agents might create cyclic executions (without creating plans that are cyclic), leading to infinite executions.

Example for infinite execution

Motivation

MAPF

Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU

Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
$\pi_{1}(S$ initially $): \quad\left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle$

Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
$\begin{array}{ll}\pi_{1}(S \text { initially }): & \left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle \\ \pi_{2}(C \text { initially }): & \left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle \\ \pi_{3}\left(C \text { after }\left(S, v_{2}, v_{3}\right)\right): & \left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle\end{array}$
Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
$\begin{array}{ll}\pi_{1}(S \text { initially }): & \left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle \\ \pi_{2}(C \text { initially }): & \left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle \\ \pi_{3}\left(C \text { after }\left(S, v_{2}, v_{3}\right)\right): & \left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle\end{array}$
Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
$\begin{array}{ll}\pi_{1}(S \text { initially }): & \left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle \\ \pi_{2}(C \text { initially }): & \left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle \\ \pi_{3}\left(C \text { after }\left(S, v_{2}, v_{3}\right)\right): & \left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle\end{array}$
Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature
$\pi_{1}\left(S\right.$ initially): $\quad\left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle$
$\pi_{2}(C$ initially $): \quad\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle$
$\pi_{3}\left(C\right.$ after $\left.\left(S, v_{2}, v_{3}\right)\right):\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle$
$\pi_{4}\left(S\right.$ after $\left.\left(C, v_{6}, v_{5}\right)\right):\left\langle\left(S, v_{3}, v_{2}\right),\left(S, v_{2}, v_{1}\right), \overline{\left(S, v_{1}, v_{8}\right)},\left(S, v_{8}, v_{7}\right), \ldots\right\rangle$

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature
π_{1} (S initially): $\quad\left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle$
$\pi_{2}(C$ initially $): \quad\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle$
$\pi_{3}\left(C\right.$ after $\left.\left(S, v_{2}, v_{3}\right)\right):\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle$
$\pi_{4}\left(S\right.$ after $\left.\left(C, v_{6}, v_{5}\right)\right):\left\langle\left(S, v_{3}, v_{2}\right),\left(S, v_{2}, v_{1}\right), \overline{\left(S, v_{1}, v_{8}\right)},\left(S, v_{8}, v_{7}\right), \ldots\right\rangle$

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
π_{1} (S initially): $\quad\left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle$
$\pi_{2}(C$ initially $): \quad\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle$
$\pi_{3}\left(C\right.$ after $\left.\left(S, v_{2}, v_{3}\right)\right):\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle$
$\pi_{4}\left(S \operatorname{after}\left(C, v_{6}, v_{5}\right)\right):\left\langle\left(S, v_{3}, v_{2}\right),\left(S, v_{2}, v_{1}\right),\left(S, v_{1}, v_{8}\right),\left(S, v_{8}, v_{7}\right), \ldots\right\rangle$

Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
π_{1} (S initially):
$\left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle$
π_{2} (C initially):
$\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle$
$\pi_{3}\left(C \operatorname{after}\left(S, v_{2}, v_{3}\right)\right):\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle$
$\pi_{4}\left(S\right.$ after $\left.\left(C, v_{6}, v_{5}\right)\right):\left\langle\left(S, v_{3}, v_{2}\right),\left(S, v_{2}, v_{1}\right),\left(S, v_{1}, v_{8}\right),\left(S, v_{8}, v_{7}\right), \ldots\right\rangle$
$\pi_{5}\left(C\right.$ after $\left.\left(S, v_{3}, v_{2}\right)\right):\left\langle\left(C, v_{5}, v_{6}\right),\left(C, v_{6}, v_{7}\right),\left(C, v_{7}, v_{8}\right),\left(C, v_{8}, v_{1}\right), \ldots\right\rangle$

Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
$\begin{array}{ll}\pi_{1}(S \text { initially): } & \left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle \\ \pi_{2}(C \text { initially }): & \left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle \\ \pi_{3}\left(C \text { after }\left(S, v_{2}, v_{3}\right)\right):\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle \\ \pi_{4}\left(S \text { after }\left(C, v_{6}, v_{5}\right)\right):\left\langle\left(S, v_{3}, v_{2}\right),\left(S, v_{2}, v_{1}\right),\left(S, v_{1}, v_{8}\right),\left(S, v_{8}, v_{7}\right), \ldots\right\rangle \\ \pi_{5}\left(C \text { after }\left(S, v_{3}, v_{2}\right)\right):\left\langle\left(C, v_{5}, v_{6}\right),\left(C, v_{6}, v_{7}\right),\left(C, v_{7}, v_{8}\right),\left(C, v_{8}, v_{1}\right), \ldots\right\rangle\end{array}$

Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
$\begin{array}{ll}\pi_{1}(S \text { initially): } & \left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle \\ \pi_{2}(C \text { initially }): & \left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle \\ \pi_{3}\left(C \text { after }\left(S, v_{2}, v_{3}\right)\right):\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle \\ \pi_{4}\left(S \text { after }\left(C, v_{6}, v_{5}\right)\right):\left\langle\left(S, v_{3}, v_{2}\right),\left(S, v_{2}, v_{1}\right),\left(S, v_{1}, v_{8}\right),\left(S, v_{8}, v_{7}\right), \ldots\right\rangle \\ \pi_{5}\left(C \text { after }\left(S, v_{3}, v_{2}\right)\right):\left\langle\left(C, v_{5}, v_{6}\right),\left(C, v_{6}, v_{7}\right),\left(C, v_{7}, v_{8}\right),\left(C, v_{8}, v_{1}\right), \ldots\right\rangle\end{array}$

Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU

$\pi_{1}(S$ initially):	$\left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle$
$\pi_{2}(C$ initially):	$\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle$
$\pi_{3}\left(C\right.$ after $\left.\left(S, v_{2}, v_{3}\right)\right):\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle$	
$\pi_{4}\left(S\right.$ after $\left.\left(C, v_{6}, v_{5}\right)\right):\left\langle\left(S, v_{3}, v_{2}\right),\left(S, v_{2}, v_{1}\right),\left(S, v_{1}, v_{8}\right),\left(S, v_{8}, v_{7}\right), \ldots\right\rangle$	
$\pi_{5}\left(C\right.$ after $\left.\left(S, v_{3}, v_{2}\right)\right):\left\langle\left(C, v_{5}, v_{6}\right),\left(C, v_{6}, v_{7}\right),\left(C, v_{7}, v_{8}\right),\left(C, v_{8}, v_{1}\right), \ldots\right\rangle$	

Summary \&
Outlook
Literature

Example for infinite execution

Motivation
MAPF
Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU

$$
\begin{array}{ll}
\pi_{1}(S \text { initially }): & \left\langle\left(S, v_{2}, v_{3}\right),\left(S, v_{3}, v_{4}\right),\left(S, v_{4}, v_{5}\right),\left(C, v_{6}, v_{7}\right), \ldots\right\rangle \\
\pi_{2}(C \text { initially }): & \left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(C, v_{4}, v_{3}\right),\left(S, v_{2}, v_{1}\right), \ldots\right\rangle \\
\pi_{3}\left(C \text { after }\left(S, v_{2}, v_{3}\right)\right):\left\langle\left(C, v_{6}, v_{5}\right),\left(C, v_{5}, v_{4}\right),\left(S, v_{3}, v_{2}\right),\left(C, v_{4}, v_{3}\right), \ldots\right\rangle \\
\pi_{4}\left(S \text { after }\left(C, v_{6}, v_{5}\right)\right): & \left\langle\left(S, v_{3}, v_{2}\right),\left(S, v_{2}, v_{1}\right),\left(S, v_{1}, v_{8}\right),\left(S, v_{8}, v_{7}\right), \ldots\right\rangle \\
\pi_{5}\left(C \text { after }\left(S, v_{3}, v_{2}\right)\right):\left\langle\left(C, v_{5}, v_{6}\right),\left(C, v_{6}, v_{7}\right),\left(C, v_{7}, v_{8}\right),\left(C, v_{8}, v_{1}\right), \ldots\right\rangle \\
\pi_{5}\left(S \text { after }\left(C, v_{5}, v_{6}\right)\right): & \left\langle\left(S, v_{2}, v_{3}\right), \ldots\right\rangle
\end{array}
$$

Summary \&
Outlook
Literature

Optimally eager agents

- Eager agents avoid deadlocks, however they are hyper-active.
- They might even move away from their destination!
- So, let force them to be smart: They should generate only optimal plans ... and among those optimal plans they should also be eager.
- In our previous example: After the square agent moved

MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature right, the circle agent will choose to move left!
\rightarrow Does it always work out?

Optimally eager agents are always successful

Theorem
Optimally eager agents are always successful on all solvable DMAPF instances.

Optimally eager agents are always successful

Theorem

Optimally eager agents are always successful on all solvable DMAPF instances.

Proof.

By induction over the length of a shortest plan k.

Optimally eager agents are always successful

Theorem

Optimally eager agents are always successful on all solvable DMAPF instances.

Proof.

By induction over the length of a shortest plan k. k=0: Obviously true.

Optimally eager agents are always successful

Theorem

Optimally eager agents are always successful on all solvable DMAPF instances.

Proof.

By induction over the length of a shortest plan k. k=0: Obviously true.
Assume the claim is true for k. Consider a DMAPF instance such that there exists a shortest plan of length $k+1$.

Optimally eager agents are always successful

Theorem

Optimally eager agents are always successful on all solvable DMAPF instances.

Proof.

By induction over the length of a shortest plan k. k=0: Obviously true.
Assume the claim is true for k. Consider a DMAPF instance such that there exists a shortest plan of length $k+1$. Because the agents are eager, at least one agent wants to move.

Optimally eager agents are always successful

Theorem

Optimally eager agents are always successful on all solvable DMAPF instances.

MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative
replanning
MAPF/DU
Summary \&
Outlook
Literature

Optimally eager agents are always successful

Theorem

Optimally eager agents are always successful on all solvable DMAPF instances.

Proof.

By induction over the length of a shortest plan k. k=0: Obviously true.
Assume the claim is true for k. Consider a DMAPF instance such that there exists a shortest plan of length $k+1$. Because the agents are eager, at least one agent wants to move. One agent will move (according to an optimal plan) and by this reduce the necessary number of steps by one. Hence, we have now an instance with plan length k and the induction hypothesis applies.

Conservative replanning

- Optimally eager agents have to solve a sequence of NP-hard problems.

Motivation
MAPF
Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative replanning

Conservative replanning

- Optimally eager agents have to solve a sequence of NP-hard problems.
- Is it possible to solve the problem more efficiently?

Motivation
MAPF

Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative replanning

Conservative replanning

- Optimally eager agents have to solve a sequence of NP-hard problems.
- Is it possible to solve the problem more efficiently?
- Conservative replanning: Always start at the initial state and consider the already executed movements as a prefix of the new plan.

Motivation

Conservative replanning

- Optimally eager agents have to solve a sequence of NP-hard problems.
- Is it possible to solve the problem more efficiently?
- Conservative replanning: Always start at the initial state and consider the already executed movements as a prefix of the new plan.
\rightarrow Avoids infinite executions because plans have to be cycle-free.

Conservative replanning

- Optimally eager agents have to solve a sequence of NP-hard problems.

Motivation

Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative replanning

Conservative replanning

- Optimally eager agents have to solve a sequence of NP-hard problems.

Motivation

Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative replanning

Conservative replanning

- Optimally eager agents have to solve a sequence of NP-hard problems.

Motivation

Distributed MAPF

Implicit coordination Joint execution

Agent types
Conservative replanning

- Assume agents are selected for execution following a pattern similar to a Gray counter.

Other ways to coordinate?

- One way to avoid NP-hardness or exponentially longer plans might be to use polynomial-time approximation algorithms. However, if different such algorithm are used, also an exponential blowup could result.

Other ways to coordinate?

■ One way to avoid NP-hardness or exponentially longer plans might be to use polynomial-time approximation algorithms. However, if different such algorithm are used, also an exponential blowup could result.

- Is it possible to use the rule-based algorithms (which are polynomial)?

Other ways to coordinate?

- One way to avoid NP-hardness or exponentially longer plans might be to use polynomial-time approximation algorithms. However, if different such algorithm are used, also an exponential blowup could result.
- Is it possible to use the rule-based algorithms (which are polynomial)?
- Assume that everybody uses the same algorithm: Of course, the agents would act in coordinated way, but this more like central planning.

Other ways to coordinate?

- One way to avoid NP-hardness or exponentially longer plans might be to use polynomial-time approximation algorithms. However, if different such algorithm are used, also an exponential blowup could result.
- Is it possible to use the rule-based algorithms (which are polynomial)?
- Assume that everybody uses the same algorithm: Of course, the agents would act in coordinated way, but this more like central planning.

Motivation
MAPF

Distributed
MAPF
Implicit coordination
Joint execution
Agent types
Conservative replanning

- If the agents may use different algorithms, then it is not clear how to avoid cyclic executions.

Other ways to coordinate?

- One way to avoid NP-hardness or exponentially longer plans might be to use polynomial-time approximation algorithms. However, if different such algorithm are used, also an exponential blowup could result.
- Is it possible to use the rule-based algorithms (which are polynomial)?
- Assume that everybody uses the same algorithm: Of course, the agents would act in coordinated way, but this more like central planning.

Motivation
MAPF
Distributed
MAPF
Implicit coordination Joint execution

Agent types
Conservative replanning

- If the agents may use different algorithms, then it is not clear how to avoid cyclic executions.
- Conservative replanning is not helpful in this context, because the executed actions might not be a prefix of a valid plan!

MAPF/DU: MAPF under destination uncertainty

Stepping Stones

Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook

Literature

MAPF/DU: MAPF under destination uncertainty

MAPF under destination uncertainty (MAPF/DU):

- The common goal of all agents is that everybody reaches its destination.

Stepping Stones

Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&
Outlook

MAPF/DU: MAPF under destination uncertainty

MAPF under destination uncertainty (MAPF/DU):

- The common goal of all agents is that everybody reaches its destination.
- All agents know their own destinations, but these are not common knowledge any longer.

MAPF/DU: MAPF under destination uncertainty

MAPF under destination uncertainty (MAPF/DU):

- The common goal of all agents is that everybody reaches its destination.
- All agents know their own destinations, but these are not common knowledge any longer.
- For each agent, there exists a set of possible destinations, which are common knowledge.

MAPF/DU: MAPF under destination uncertainty

MAPF under destination uncertainty (MAPF/DU):

- The common goal of all agents is that everybody reaches its destination.
- All agents know their own destinations, but these are not common knowledge any longer.
- For each agent, there exists a set of possible destinations, which are common knowledge.
- All agents plan and re-plan without communicating with their peers.

MAPF/DU: MAPF under destination uncertainty

MAPF under destination uncertainty (MAPF/DU):

- The common goal of all agents is that everybody reaches its destination.
- All agents know their own destinations, but these are not common knowledge any longer.
- For each agent, there exists a set of possible destinations, which are common knowledge.
- All agents plan and re-plan without communicating with their peers.
- A success announcement action becomes necessary, which the agents may use to announce that they have reached their destination (and after that they are not allowed to move anymore).

MAPF/DU: MAPF under destination uncertainty

MAPF under destination uncertainty (MAPF/DU):

- The common goal of all agents is that everybody reaches its destination.
- All agents know their own destinations, but these are not common knowledge any longer.
- For each agent, there exists a set of possible destinations, which are common knowledge.
- All agents plan and re-plan without communicating with their peers.
- A success announcement action becomes necessary, which the agents may use to announce that they have reached their destination (and after that they are not allowed to move anymore).

Motivation

MAPF

Distributed MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook
Literature
\rightarrow Models multi-robot interactions without communication

MAPF/DU: Conceptual problems

- We need a solution concept for the agents: implicitly coordinated branching plans.

Stepping Stones

Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook

MAPF/DU: Conceptual problems

- We need a solution concept for the agents: implicitly coordinated branching plans.
- We need to find conditions that guarantee success of joint execution.

Stepping Stones

Execution cost
Execution
guarantees
Computationa
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&
Outlook

MAPF/DU: Conceptual problems

- We need a solution concept for the agents: implicitly coordinated branching plans.

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computationa
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU

Summary \&
Outlook
Literature

MAPF/DU: Conceptual problems

- We need a solution concept for the agents: implicitly coordinated branching plans.
- We need to find conditions that guarantee success of joint execution.
- We have to determine the computational complexity for finding plans and deciding solvability.
\rightarrow Since MAPF/DU is a special case of epistemic planning (initial state uncertainty which is monotonically decreasing), we can use concepts and results from this area.

MAPF/DU representation \& state space

- In addition to the sets of agents A, the graph $G=(V, E)$, and the assignment of agents to nodes α, we need a function to represent the possible destinations $\beta: A \rightarrow 2^{V}$.

MAPF/DU representation \& state space

- In addition to the sets of agents A, the graph $G=(V, E)$, and the assignment of agents to nodes α, we need a function to represent the possible destinations $\beta: A \rightarrow 2^{V}$.
- We assume that the set of possible destinations are pairwise disjoint (this can be relaxed, though).

MAPF/DU representation \& state space

- In addition to the sets of agents A, the graph $G=(V, E)$, and the assignment of agents to nodes α, we need a function to represent the possible destinations $\beta: A \rightarrow 2^{V}$.
- We assume that the set of possible destinations are pairwise disjoint (this can be relaxed, though).
- An objective state is given by the pair $s=\langle\alpha, \beta\rangle$ representing the common knowledge of all agents.

MAPF/DU representation \& state space

- In addition to the sets of agents A, the graph $G=(V, E)$, and the assignment of agents to nodes α, we need a function to represent the possible destinations $\beta: A \rightarrow 2^{V}$.
- We assume that the set of possible destinations are pairwise disjoint (this can be relaxed, though).
- An objective state is given by the pair $s=\langle\alpha, \beta\rangle$ representing the common knowledge of all agents.
- A subjective state of agent i is given by $s^{i}\langle\alpha, \beta, i, v\rangle$ with $v \in \beta(i)$, representing the private knowledge of agent i.

MAPF/DU representation \& state space

- In addition to the sets of agents A, the graph $G=(V, E)$, and the assignment of agents to nodes α, we need a function to represent the possible destinations $\beta: A \rightarrow 2^{V}$.
- We assume that the set of possible destinations are pairwise disjoint (this can be relaxed, though).
- An objective state is given by the pair $s=\langle\alpha, \beta\rangle$ representing the common knowledge of all agents.
- A subjective state of agent i is given by $s^{i}\langle\alpha, \beta, i, v\rangle$ with $v \in \beta(i)$, representing the private knowledge of agent i.
- A MAPF/DU instance is given by $\left\langle A, G, s_{0}, \alpha_{*}\right\rangle$, where $s_{0}=\left\langle\alpha_{0}, \beta_{0}\right\rangle$.

MAPF/DU: Implicitly coordinated branching plans

- Square agent S wants to go to v_{3} and knows that circle agent C wants to go to v_{1} or v_{4}.

Stepping Stones

Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU

Summary \&
Outlook

MAPF/DU: Implicitly coordinated branching plans

- Square agent S wants to go to v_{3} and knows that circle agent C wants to go to v_{1} or v_{4}.
- C wants to go to v_{4} and knows that S wants to go to v_{2} or v_{3}.

Stepping Stones

Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&
Outlook

MAPF/DU: Implicitly coordinated branching plans

- Square agent S wants to go to v_{3} and knows that circle agent C wants to go to v_{1} or v_{4}.
- C wants to go to v_{4} and knows that S
 wants to go to v_{2} or v_{3}.
- Let us assume S forms a plan in which it moves in order to empower C to reach their common goal.

MAPF/DU: Implicitly coordinated branching plans

- Square agent S wants to go to v_{3} and knows that circle agent C wants to go to v_{1} or v_{4}.
- C wants to go to v_{4} and knows that S
 wants to go to v_{2} or v_{3}.
- Let us assume S forms a plan in which it moves in order to empower C to reach their common goal.
- S needs shifting its perspective in order to plan for all possible destinations of C (branching on destinations).

MAPF/DU: Implicitly coordinated branching plans

- Square agent S wants to go to v_{3} and knows that circle agent C wants to go to v_{1} or v_{4}.
- C wants to go to v_{4} and knows that S
 wants to go to v_{2} or v_{3}.
- Let us assume S forms a plan in which it moves in order to empower C to reach their common goal.
- S needs shifting its perspective in order to plan for all possible destinations of C (branching on destinations).
- Planning for C, S must forget about its own destination.

Branching plans：Building blocks

Branching plans consist of：
－Movement actions：（〈agent \rangle,\langle sourcenode \rangle,\langle targetnode \rangle ）， i．e．，a movement of an agent
－Success announcement：（ \langle agent \rangle, \mathcal{S} ），after that all agents know that the agent has reached its destination and it cannot move anymore
－Perspective shift：［〈agent〉 ：．．．］，i．e．，from here on we assume to plan with the knowledge of agent \langle agent \rangle ．This can be unconditional or conditional on 〈agent〉＇s destinations． find a successful plan to reach the goal state．

Semantics of branching plans

■ Movement actions modify α in the obvious way.

Semantics of branching plans

- Movement actions modify α in the obvious way.
- A success announcement of agent i transforms β to β^{\prime} such that $\beta^{\prime}(i)=\emptyset$ in order to signal that i cannot move anymore.

Semantics of branching plans

■ Movement actions modify α in the obvious way.

- A success announcement of agent i transforms β to β^{\prime} such that $\beta^{\prime}(i)=\emptyset$ in order to signal that i cannot move anymore.
- A perspective shift from i to j with subsequent branching on destinations transforms the subjective state $s^{i}=\left\langle\alpha, \beta, i, v_{i}\right\rangle$ to a set of subjective states $s^{j k}=\left\langle\alpha, \beta, j, v_{j_{k}}\right\rangle$ with all $v_{j_{k}} \in \beta(j)$.

Semantics of branching plans

- Movement actions modify α in the obvious way.
- A success announcement of agent i transforms β to β^{\prime} such

MAPF
Distributed MAPF

MAPF/DU
Implicitly
Coordinated Branching Plans Strong plans

Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook

Branching plan: Example

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computationa
Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Branching plan: Subjective execution example

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook
Literature

Strong plans

Similar to the notion of strong plans in non-deterministic single-agent planning, we define i-strong plans for an agent i to be:

- cycle-free, i.e., not visiting the same objective state twice;
- always successful, i.e. always ending up in a state such that all agents have announced success;
- covering, i.e., for all combinations of possible destinations of agents different from i, success can be reached.

Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook

Subjectively and objectively strong plans

- A plan is called subjectively strong if it is i-strong for some agent i.
- A plan is called objectively strong if it is i-strong for each agent i.
- An instance is objectively or subjectively solvable if there exists an objectively or subjectively strong plan, respectively.

Subjectively and objectively strong plans

- A plan is called subjectively strong if it is i-strong for some agent i.
- A plan is called objectively strong if it is i-strong for each agent i.
- An instance is objectively or subjectively solvable if there exists an objectively or subjectively strong plan, respectively.

Subjectively and objectively strong plans

- A plan is called subjectively strong if it is i-strong for some agent i.
- A plan is called objectively strong if it is i-strong for each agent i.
- An instance is objectively or subjectively solvable if there exists an objectively or subjectively strong plan, respectively.

\rightarrow There does not exist a T-strong plan, but an S - and a C-strong plan.

Subjectively and objectively strong plans

- A plan is called subjectively strong if it is i-strong for some agent i.
- A plan is called objectively strong if it is i-strong for each agent i.
- An instance is objectively or subjectively solvable if there exists an objectively or subjectively strong plan, respectively.
\rightarrow There does not exist a T-strong plan, but an S - and a C-strong plan.
- Difference between subjective and objective solvability
 concerns only the first acting agent!

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.
- S can create a stepping stone for C by moving from v_{1} via v_{4} to v_{3}.

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.
- S can create a stepping stone for C by moving from v_{1} via v_{4} to v_{3}.

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.
- S can create a stepping stone for C by moving from v_{1} via v_{4} to v_{3}.

Stepping Stones

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.
- S can create a stepping stone for C by moving from v_{1} via v_{4} to v_{3}.
- C can now move to v_{1} or v_{4} and

Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&
Outlook

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.
- S can create a stepping stone for C by moving from v_{1} via v_{4} to v_{3}.
- C can now move to v_{1} or v_{4} and

Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&
Outlook

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.
- S can create a stepping stone for C by moving from v_{1} via v_{4} to v_{3}.
- C can now move to v_{1} or v_{4} and

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.
- S can create a stepping stone for C by moving from v_{1} via v_{4} to v_{3}.
- C can now move to v_{1} or v_{4} and
 announce success.
- In each case, S can move afterwards to its destination (or stay) and announce success.

Stepping Stones

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.
- S can create a stepping stone for C by moving from v_{1} via v_{4} to v_{3}.
- C can now move to v_{1} or v_{4} and
 announce success.
- In each case, S can move afterwards to its destination (or stay) and announce success.

Stepping Stones

Structure of strong plans: Stepping stones

- A stepping stone for agent i is a state in which i can move to each of its possible destinations, announcing success, and afterwards, for each possible destination, there exists an i-strong plan to solve the resulting states.
- S can create a stepping stone for C by moving from v_{1} via v_{4} to v_{3}.
- C can now move to v_{1} or v_{4} and

Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \& success.

Stepping Stone Theorem

Theorem
Given an i-solvable
MAPF/DU instance, there
exists an i-strong
branching plan such that
the only branching points
are those utilizing
stepping stones.

Stepping Stone Theorem

Theorem
 Given an i-solvable MAPF/DU instance, there

Stepping Stone Theorem

Theorem

Given an i-solvable MAPF/DU instance, there exists an i-strong branching plan such that the only branching points are those utilizing stepping stones.

Proof sketch.
Remove non-stepping stone branching points by picking one branch without success announcement.

Proof by example $\left(S, v_{1}, v_{4}\right)$

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook
Literature

Stepping Stone Theorem

Theorem

Given an i-solvable MAPF/DU instance, there exists an i-strong branching plan such that the only branching points are those utilizing stepping stones.

Proof sketch.
Remove non-stepping stone branching points by picking one branch without success announcement.

Proof by example $\left(S, v_{1}, v_{4}\right)$

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook
Literature

Stepping Stone Theorem

Theorem

Given an i-solvable MAPF/DU instance, there exists an i-strong branching plan such that the only branching points are those utilizing stepping stones.

Proof sketch.

Remove non-stepping stone branching points by picking one branch without success announcement.

Proof by example

 $\left(S, v_{1}, v_{4}\right)$

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook
Literature

Execution cost

The execution cost of a branching plan is the number of atomic actions of the longest execution trace.

Execution cost

The execution cost of a branching plan is the number of atomic actions of the longest execution trace.

Theorem

Given an i-solvable MAPF/DU instance over a graph $G=(V, E)$, then there exists an i-strong branching plan with execution cost bounded by $O\left(|V|^{4}\right)$.

Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&
Outlook

Execution cost

The execution cost of a branching plan is the number of atomic actions of the longest execution trace.

Joint execution and execution guarantees

- Joint execution is defined similarly to the fully observable case: One agent is chosen; afterwards the plan is tracked or the agent has to replan.

Joint execution and execution guarantees

- Joint execution is defined similarly to the fully observable case: One agent is chosen; afterwards the plan is tracked or the agent has to replan.

Joint execution and execution guarantees

- Joint execution is defined similarly to the fully observable case: One agent is chosen; afterwards the plan is tracked or the agent has to replan.

Joint execution and execution guarantees

- Joint execution is defined similarly to the fully observable case: One agent is chosen; afterwards the plan is tracked or the agent has to replan.
- In the MAPF/DU framework not all agents might have a plan initially!
- One might hope that optimally eager agents are always successful.
- In epistemic planning this was proven to be true only in the uniform knowledge case.

Joint execution and execution guarantees

- Joint execution is defined similarly to the fully observable case: One agent is chosen; afterwards the plan is tracked or the agent has to replan.
- In the MAPF/DU framework not all agents might have a plan initially!
- One might hope that optimally eager agents are always successful.
- In epistemic planning this was proven to be true only in the uniform knowledge case.
- We do not have uniform knowledge ... and indeed, execution cycles cannot be excluded.

A counter example

A number on an edge means that there are as many nodes on a line.

Motivation

MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

A counter example

A number on an edge means that there are as many nodes on a line.

- Agent 2 has a shortest eager plan moving first to v_{6}.

A counter example

A number on an edge means that there are as many nodes on a line.

- Agent 2 has a shortest eager plan moving first to v_{6}.

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computational
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&
Outlook

A counter example

A number on an edge means that there are as many nodes on a line.

- Agent 2 has a shortest eager plan moving first to v_{6}.
- Agent 1 has then a shortest eager plan moving first to v_{4}.

Motivation
MAPF
Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computationa
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&
Outlook

A counter example

A number on an edge means that there are as many nodes on a line.

- Agent 2 has a shortest eager plan moving first to v_{6}.
- Agent 1 has then a shortest eager plan moving first to v_{4}.

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computationa
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&
Outlook

A counter example

A number on an edge means that there are as many nodes on a line.

- Agent 2 has a shortest eager plan moving first to v_{6}.
- Agent 1 has then a shortest eager plan moving first to v_{4}.
- Agent 2 has then a shortest eager plan moving first to v_{5}.

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly Coordinated Branching Plans

Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computational
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&

A counter example

A number on an edge means that there are as many nodes on a line.

- Agent 2 has a shortest eager plan moving first to v_{6}.
- Agent 1 has then a shortest eager plan moving first to v_{4}.
- Agent 2 has then a shortest eager plan moving first to v_{5}.

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computationa
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU
Summary \&

A counter example

A number on an edge means that there are as many nodes on a line.

- Agent 2 has a shortest eager plan moving first to v_{6}.
- Agent 1 has then a shortest eager plan moving first to v_{4}.
- Agent 2 has then a shortest eager plan moving first to v_{5}.
- Agent 1 has then a shortest eager plan moving first to v_{2}.

A counter example

A number on an edge means that there are as many nodes on a line.

- Agent 2 has a shortest eager plan moving first to v_{6}.
- Agent 1 has then a shortest eager plan moving first to v_{4}.
- Agent 2 has then a shortest eager plan moving first to v_{5}.
- Agent 1 has then a shortest eager plan moving first to v_{2}.

Conservatism

- Perhaps conservatism can help!
- Similarly to DMAPF, conservative replanning means that the already executed actions are used as a prefix in the plan to be generated.
- Differently from DMAPF, we assume that after a success announcement, the initial state is modified so that the real destination of the agent is known in the initial state.
- Otherwise we could not solve instances that are only subjectively solvable.

MAPF

Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook

Conservative, optimally eager agents

- Conservative, eager agents are always successful, but might visit the entire state space before terminating.

Conservative, optimally eager agents

■ Conservative, eager agents are always successful, but might visit the entire state space before terminating.

- Adding optimal eagerness can help to reduce the execution length.

Conservative, optimally eager agents

■ Conservative, eager agents are always successful, but might visit the entire state space before terminating.

- Adding optimal eagerness can help to reduce the execution length.

Theorem

For solvable MAPF/DU instances, joint execution and replanning by conservative, optimally eager agents is always successful and the execution length is polynomial.

Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computational
Complexity:
Reminder
Computationa
Complexity of
MAPF/DU

Summary \&

Conservative, optimally eager agents

- Conservative, eager agents are always successful, but might visit the entire state space before terminating.
- Adding optimal eagerness can help to reduce the execution length.

Motivation
MAPF
Distributed
MAPF

Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computational Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook
Literature

Conservative replanning example

Assume S moves first to v_{4}.

MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computationa
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook
Literature

Conservative replanning example

Assume S moves first to v_{4}.

MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computationa
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook
Literature

Conservative replanning example

Assume S moves first to v_{4}.

MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees

Computationa
Complexity:
Reminder
Computational
Complexity of
MAPF/DU
Summary \&
Outlook
Literature

Conservative replanning example

- Assume S moves first to v_{4}.
- Assume C re-plans. From now on, in replanning from the beginning, it has to do a perspective shift to S, because it now has to extend the partial plan starting with $\left(S, v_{4}, v_{1}\right)$, i.e., it has to create an objectively strong plan.

Conservative replanning example

- Assume S moves first to v_{4}.
- Assume C re-plans. From now on, in replanning from the beginning, it has to do a perspective shift to S, because it now has to extend the partial plan starting with $\left(S, v_{4}, v_{1}\right)$, i.e., it has to create an objectively strong plan.
- Assume that C moves now to v_{1}.

Conservative replanning example

- Assume S moves first to v_{4}.
- Assume C re-plans. From now on, in replanning from the beginning, it has to do a perspective shift to S, because it now has to extend the partial plan starting with $\left(S, v_{4}, v_{1}\right)$, i.e., it has to create an objectively strong plan.
- Assume that C moves now to v_{1}.

Conservative replanning example

- Assume S moves first to v_{4}.
- Assume C re-plans. From now on, in replanning from the beginning, it has to do a perspective shift to S, because it now has to extend the partial plan starting with $\left(S, v_{4}, v_{1}\right)$, i.e., it has to create an objectively strong plan.
- Assume that C moves now to v_{1}.

Conservative replanning example

- Assume S moves first to v_{4}.
- Assume C re-plans. From now on, in replanning from the beginning, it has to do a perspective shift to S, because it now has to extend the partial plan starting with $\left(S, v_{4}, v_{1}\right)$, i.e., it has to create an objectively strong plan.
- Assume that C moves now to v_{1}.
- From now on, also S has to make a perspective shift to C, effectively "forgetting" its own destination, i.e., it also has to create a objectively strong plan.

Computational Complexity: Algorithms and Turing machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Computational Complexity:
 Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$. I : instance; A : answer
If all answers $A \in\{0,1\}$: decision problem

Computational Complexity: Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$. I : instance; A : answer If all answers $A \in\{0,1\}$: decision problem
\square A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1

Computational Complexity: Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$. I : instance; A : answer If all answers $A \in\{0,1\}$: decision problem
\square A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm solves (or decides) a problem if it computes the right answer for all instances.

Computational Complexity: Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$. I : instance; A : answer If all answers $A \in\{0,1\}$: decision problem
\square A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm solves (or decides) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

$$
T: \mathbb{N} \rightarrow \mathbb{N}
$$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational Complexity: Reminder
Complexity
classes P and NP
NP-completeness The class co-NP
The class
PSPACE
Computational Complexity of MAPF/DU

Computational Complexity: Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$.
I : instance; A : answer
If all answers $A \in\{0,1\}$: decision problem
\square A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm solves (or decides) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

$$
T: \mathbb{N} \rightarrow \mathbb{N}
$$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance

- Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational Complexity: Reminder
Complexity
classes P and NP NP-completeness The class co-NP The class
PSPACE
Computational Complexity of MAPF/DU

Computational Complexity: Complexity classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
- Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, a reasonable definition
- The class of problems decidable on non-deterministic Turing machines in polynomial time, i.e., having a poly. length accepting computation for all positive instances: NP
- More classes are definable using other resource bounds on time and memory

Computational Complexity:
 Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:

Stepping Stones

Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Complexity classes P and NP

NP-completeness
The class co-NP
The class
PSPACE
Computational
Complexity of
MAPF/DU

Computational Complexity:
 Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:

Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Complexity classes P and NP

NP-completeness
The class co-NP
The class
PSPACE
Computational
Complexity of
MAPF/DU

Computational Complexity: Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:

Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Complexity classes P and NP

NP-completeness
The class co-NP
The class
PSPACE
Computational
Complexity of
MAPF/DU

Computational Complexity: Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:
- provide an algorithm
- show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:

Computational Complexity: Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:
- provide an algorithm
- show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
- the technical tool here is the polynomial reduction (or any other appropriate reduction)

Computational Complexity: Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:
- provide an algorithm
- show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
- the technical tool here is the polynomial reduction (or any other appropriate reduction)
- show that some hard problem can be reduced to the problem at hand

Computational Complexity: Polynomial reduction

- Given languages L_{1} and L_{2}, L_{1} can be polynomially reduced to L_{2}, written $L_{1} \leq_{p} L_{2}$, if there exists a polynomial time-computable function f such that

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2} .
$$

Rationale: it cannot be harder to decide L_{1} than L_{2}

Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Complexity
classes P and NP
NP-completeness
The class co-NP
The class
PSPACE
Computational
Complexity of
MAPF/DU

Computational Complexity: Polynomial reduction

- Given languages L_{1} and L_{2}, L_{1} can be polynomially reduced to L_{2}, written $L_{1} \leq_{p} L_{2}$, if there exists a polynomial time-computable function f such that

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

Rationale: it cannot be harder to decide L_{1} than L_{2}
$\square L$ is hard for a class C (C-hard) if all languages of this class can be reduced to L.

Computational Complexity: Polynomial reduction

- Given languages L_{1} and L_{2}, L_{1} can be polynomially reduced to L_{2}, written $L_{1} \leq_{p} L_{2}$, if there exists a polynomial time-computable function f such that

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

Rationale: it cannot be harder to decide L_{1} than L_{2}

- L is hard for a class C (C-hard) if all languages of this class can be reduced to L.
$\square L$ is complete for C (C-complete) if L is C-hard and $L \in C$.

Computational Complexity: NP-complete problems

Motivation

MAPF

Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computationa
Complexity:
Reminder
Complexity
classes P and NP
NP-completeness
The class co-NP
The class
PSPACE
Computational
Complexity of
MAPF/DU

Computational Complexity: NP-complete problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)

Computational Complexity: NP-complete problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
- Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth assignments of certain formulae

Computational Complexity: NP-complete problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)

Computational Complexity:
 The complexity class co-NP

Note that there is some asymmetry in the definition of NP:

Stepping Stones

Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Complexity
classes P and NP
NP-completeness
The class co-NP
The class
PSPACE
Computational
Complexity of
MAPF/DU

Computational Complexity:
 The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation

Computational Complexity: The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable

Distributed
MAPF

Computational Complexity: The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- In other words: Checking a proposed solution (of poly size) is easy.

Computational Complexity: The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable

Distributed

- In other words: Checking a proposed solution (of poly size) is easy.
- What if we want to decide UNSAT, the complementary problem?

Computational Complexity: The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- In other words: Checking a proposed solution (of poly size) is easy.
- What if we want to decide UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!

Distributed MAPF

classes P and NP

Computational Complexity: The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- In other words: Checking a proposed solution (of poly size) is easy.
- What if we want to decide UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
- Define co- $C=\left\{L \subseteq \Sigma^{*}: \Sigma^{*} \backslash L \in C\right\}$ (provided Σ is our alphabet)

Computational Complexity: The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- In other words: Checking a proposed solution (of poly size) is easy.
- What if we want to decide UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
- Define co-C $=\left\{L \subseteq \Sigma^{*}: \Sigma^{*} \backslash L \in C\right\}$ (provided Σ is our alphabet)
- co-NP $=\left\{L \subseteq \Sigma^{*}: \Sigma^{*} \backslash L \in N P\right\}$

Computational Complexity: The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- In other words: Checking a proposed solution (of poly size) is easy.
- What if we want to decide UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
\square Define co- $C=\left\{L \subseteq \Sigma^{*}: \Sigma^{*} \backslash L \in C\right\}$ (provided Σ is our alphabet)
- co-NP $=\left\{L \subseteq \Sigma^{*}: \Sigma^{*} \backslash L \in N P\right\}$
- Examples: UNSAT, TAUT \in co-NP!

Computational Complexity: The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
\square It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- In other words: Checking a proposed solution (of poly size) is easy.
- What if we want to decide UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
\square Define co-C $=\left\{L \subseteq \Sigma^{*}: \Sigma^{*} \backslash L \in C\right\}$ (provided Σ is our alphabet)
- co-NP $=\left\{L \subseteq \Sigma^{*}: \Sigma^{*} \backslash L \in N P\right\}$
- Examples: UNSAT, TAUT \in co-NP!
- Note: P is closed under complement, in particular,

$$
\mathrm{P} \subseteq \mathrm{NP} \cap \operatorname{co-}-\mathrm{NP}
$$

Motivation

MAPF

Distributed MAPF

Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Complexity
classes P and NP
NP-completeness
The class co-NP
The class
PSPACE
Computational Complexity of MAPF/DU

Computational Complexity: PSPACE

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Complexity
classes P and NP
NP-completeness
The class co-NP
The class
PSPACE

Computational Complexity: PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Computational Complexity: PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Complexity
classes P and NP
NP-completeness The class co-NP
The class
PSPACE
Computational

Computational Complexity: PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Computational Complexity: PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.

Computational Complexity: PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.
An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_{1} and A_{2}.
Question: Are the languages accepted by A_{1} and A_{2} identical?

Computational complexity of MAPF/DU bounded plan existence

Theorem

Deciding whether there exists an eager MAPF/DU i-strong or objectively strong plan with execution cost k or less is PSPACE-complete.

Since plans have polynomial depth, all execution traces can be generated non-deterministically and tested using only polynomial space, i.e., PSPACE-membership.

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \& Outlook

Computational complexity of MAPF/DU bounded plan existence

Theorem

Deciding whether there exists an eager MAPF/DU i-strong or objectively strong plan with execution cost k or less is PSPACE-complete.

Since plans have polynomial depth, all execution traces can be generated non-deterministically and tested using only polynomial space, i.e., PSPACE-membership. For hardness, reduction from QBF.

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \& Outlook

Computational complexity of MAPF/DU bounded plan existence

Theorem

Deciding whether there exists an eager MAPF/DU i-strong or

Since plans have polynomial depth, all execution traces can be generated non-deterministically and tested using only polynomial space, i.e., PSPACE-membership. For hardness, reduction from QBF.
Example construction for
$\forall x_{1} \exists x_{2} \forall x_{3}$:
$\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \& Outlook

Computational complexity of MAPF/DU bounded plan existence

Theorem

Deciding whether there exists an eager MAPF/DU i-strong or

 objectively strong plan with execution cost k or less is PSPACE-complete.
The reduction enlarged

Complexity with a fixed number of agents

These results probably imply that the technique could not be used online.

For a fixed number of agents, however, the bounded planning problem is polynomial.

Theorem

For a fixed number c of agents, deciding whether there exists a MAPF/DU i-strong or objectively strong plan with execution cost of k or less can be done in time $O\left(n^{c^{2}+c}\right)$.

That means, for two agents, it takes "only" $O\left(n^{6}\right)$ time - but in practice it should be faster.

Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational

An algorithm for generating an objective MAPF/DU plan for two agents

1 Determine in the state space of all node assignments the distance to the initial state using Dijkstra: $O\left(|V|^{4}\right)$ time.

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

Summary \&
Outlook

An algorithm for generating an objective MAPF/DU plan for two agents

1 Determine in the state space of all node assignments the distance to the initial state using Dijkstra: $O\left(|V|^{4}\right)$ time.
2 For each of the $O\left(|V|^{2}\right)$ configurations check, whether it is a potential stepping stone for one agent, i.e., whether all potential destinations of this agent are reachable using Dijkstra on the modified graph, where the other agent blocks the way: $O\left(|V|^{4}\right)$ time.

An algorithm for generating an objective MAPF/DU plan for two agents

1 Determine in the state space of all node assignments the distance to the initial state using Dijkstra: $O\left(|V|^{4}\right)$ time.
2 For each of the $O\left(|V|^{2}\right)$ configurations check, whether it is a potential stepping stone for one agent, i.e., whether all potential destinations of this agent are reachable using Dijkstra on the modified graph, where the other agent blocks the way: $O\left(|V|^{4}\right)$ time.
3 For all $O\left(|V|^{2}\right)$ potential stepping stones, check whether for each of the $O(|V|)$ possible destination of the first agent, the second agent can reach its possible destinations and use Dijkstra to compute the shortest path: altogether $O\left(|V|^{5}\right)$ time.

Motivation
MAPF
Distributed
MAPF
MAPF/DU
Implicitly
Coordinated
Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution
guarantees
Computational
Complexity:
Reminder
Computational Complexity of MAPF/DU

An algorithm for generating an objective MAPF/DU plan for two agents

1 Determine in the state space of all node assignments the distance to the initial state using Dijkstra: $O\left(|V|^{4}\right)$ time.
2 For each of the $O\left(|V|^{2}\right)$ configurations check, whether it is a potential stepping stone for one agent, i.e., whether all potential destinations of this agent are reachable using Dijkstra on the modified graph, where the other agent blocks the way: $O\left(|V|^{4}\right)$ time.
3 For all $O\left(|V|^{2}\right)$ potential stepping stones, check whether for each of the $O(|V|)$ possible destination of the first agent, the second agent can reach its possible destinations and use Dijkstra to compute the shortest path: altogether $O\left(|V|^{5}\right)$ time.
4 Consider all stepping stones and minimize over the maximum plan depth. Among the minimal plans select those that are eager for the planning agent.

MAPF
Distributed
MAPF

Summary \& Outlook

- DMAPF generalizes the MAPF problem by dropping the assumption that plans are generated centrally and then communicated.
- MAPF/DU generalizes the MAPF problem further by dropping the assumptions that destinations are common knowledge.
- A solution concept for this setting are i-strong branching plans corresponding to implicitly coordinated policies in the area of epistemic planning.
- The backbone of such plans are stepping stones.
- Joint execution can be guaranteed to be successful and polynomially bounded if all agents are conservative and optimally eager.
- While plan existence in general is PSPACE-complete, it is polynomial for a fixed number of agents.

Outlook

\rightarrow Do the results still hold for planar graphs?

- Is MAPF/DU plan existence also PSPACE-complete?
- How would more general forms of describing the common knowledge about destinations affect the results?
\rightarrow Overlap of destinations or general Boolean combinations
- Can we get similar results for other execution semantics?
\rightarrow Concurrent executions of actions
- Can we be more aggressive in expectations about possible destinations?
\rightarrow Use forward induction, i.e., assume that actions in the past were rational.
- Are other forms of implicit coordination possible?
\rightarrow More communication? Coordination in competitive scenarios?

Literature

Summary \& Outlook

Literature

Literature (1)

D. Kornhauser, G. L. Miller, and P. G. Spirakis.

Coordinating pebble motion on graphs, the diameter of permutation

Distributed
O. Goldreich.

Finding the shortest move-sequence in the graph-generalized 15-puzzle is NP-hard.
In Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, pages 1-5. 2011.

Literature (2)

园
H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. HÃúnig, T. K. Satish Kumar, T. Uras, H. Xu, C. A. Tovey, G. Sharon:

Overview: Generalizations of Multi-Agent Path Finding to Real-World Scenarios.
CoRR abs/1702.05515, 2017.
T A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg, G.
Sharon, N. R. Sturtevant, G. Wagner, and P. Surynek.
Search-Based Optimal Solvers for the Multi-Agent Pathfinding Problem: Summary and Challenges.
In Proceedings of the Tenth International Symposium on Combinatorial Search (SOCS-17), pages 29-37, 2017.
固
P Surynek.
A novel approach to path planning for multiple robots in bi-connected graphs.
In Proc. 2009 IEEE International Conference on Robotics and Automation, ICRA 2009, pages 3613-3619, 2009.

Literature (3)

B. Nebel, T. Bolander, T. Engesser and R. Mattmüller.

Implicitly Coordinated Multi-Agent Path Finding under Destination Uncertainty.
Accepted to be published in Journal of Artificial Intelligence research. Implicit Coordination.
In Proceedings of the Sixteenth Conference on Principles of Knowledge Representation and Reasoning (KR-18), pages 445-453. 2018.
T. Engesser, T. Bolander, R. Mattmüller, and B. Nebel.

Cooperative epistemic multi-agent planning for implicit coordination.
In Proceedings of the Ninth Workshop on Methods for Modalities (M4MICLA-17), pages 75-90, 2017.

