
Multi-Agent Systems
Multi-Agent Path Finding

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
Winter Term 2018/19

Motivation

MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

1 Motivation

Nebel, Lindner, Engesser – MAS 3 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Agents moving in a spatial environment

A central problem in many applications is the coordinated
movement of agents/robots/vehicles in a given spatial
environment.

Logistic robots (KARIS) Airport ground traffic control (atrics)

Nebel, Lindner, Engesser – MAS 4 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

2 Multi-agent path finding (MAPF)

Definition and example
MAPF Variations
MAPF Algorithms
Computational Complextiy of MAPF

Nebel, Lindner, Engesser – MAS 6 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)
Given a set of agents A, an undirected, simple graph G = (V ,E),
an initial state modelled by an injective function α0 : A→ V , and
a goal state modelled by another injective function α∗, can α0 be
transformed into α∗ by movements of single agents without
collisions?

Existence problem: Does there exist a successful sequence
of movements (= plan)?
Bounded existence problem: Does there exist a plan of a
given length k or less?
Plan generation problem: Generate a plan.
Optimal plan generation problem: Generate a shortest plan.

Nebel, Lindner, Engesser – MAS 7 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4), (S,v1,v2), (S,v2,v3),(C,v4,v2).

Nebel, Lindner, Engesser – MAS 8 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

A special case: 15-puzzle

Pictures from Wikipedia article on 15-Puzzle

Nebel, Lindner, Engesser – MAS 9 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Lecture plan

MAPF: variations, algorithms, complexity
Distributed MAPF (each agent plans on it own): DMAPF
Distributed MAPF with destination uncertainty: MAPF/DU

Nebel, Lindner, Engesser – MAS 10 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Sequential MAPF

Sequential MAPF (or pebble motion on a graph) allows only
one agent to move per time step.
An agent a ∈ A can move in one step from s ∈ V to t ∈ V
transforming α to α ′, if

α(a) = s,
〈s, t〉 ∈ E,
there is no agent b such that α(b) = t.

In this case, α ′ is determined as follows:
α ′(a) = t,
for all agents b 6= a : α(b) = α ′(b),

One usually wants to minimize the number of single
movements (= sum-of-cost over all agents)

Nebel, Lindner, Engesser – MAS 11 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Parallel MAPF

Parallel MAPF allows many agents to move in parallel,
provided they do not collide.
Two models:

Parallel: A chain of agents can move provided the first agent
can move on a an unoccupied vertex.
Parallel with rotations: A closed cycle in move
synchronously.

In both cases, one is usually interested in the number of
parallel steps (= make-span).
However, also the sum-of-cost is sometimes considered.

Nebel, Lindner, Engesser – MAS 12 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Anonymous MAPF

There is a set of agents and a set of targets (of the same
cardinality as the agent set).
Each target must be reached by one agent.
This means one first has to assign a target and then to
solve the original MAPF problem.
Interestingly, the problem as a whole is easier to solve
(using flow-based techniques).

Nebel, Lindner, Engesser – MAS 13 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Types of MAPF algorithms

A∗-based algorithm (optimal)
Conflict-based search (optimal)
Reduction-based approaches: Translate MAPF to SAT, ASP
or to a CSP (usually optimal)
Suboptimal search-based algorithms (may even be
incomplete): Cooperative A∗ (CA∗), Hierarchical
Cooperative A∗ (HCA∗) and Windowed HCA∗ (WHCA∗).
Rule-based algorithms: Kornhauser’s algorithm,
Push-and-Rotate, BIBOX, . . . (complete on a given class of
graphs, but suboptimal)

Nebel, Lindner, Engesser – MAS 14 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

A∗-based algorithm

Define state space:
A state is an assignment of agents to vertices (modelled by
a function α)
There is a transition from one state α to α ′ iff there is a legal
move from α to α ′ according to the appropriate semantics
(sequential, parallel, or parallel with rotations)

Search in this state space using the A∗ algorithm.
Possible heuristic estimator: Sum or maximum over the
length of the individual movement plans (ignoring other
agents).
Problem: Large branching factor because of many agents
that can move.

Nebel, Lindner, Engesser – MAS 15 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Example: State space for A∗ algorithm

v1 v2 v3

v4

Convention: Function α is represented by 〈α(S),α(C)〉
Question: How many states?

〈v1,v3〉

〈v1,v2〉

〈v2,v3〉

〈v1,v4〉

〈v4,v3〉

〈v2,v4〉

〈v4,v2〉

〈v3,v4〉

〈v4,v1〉 〈v2,v1〉 〈v3,v1〉

〈v3,v2〉

Question: Heuristic value for states 〈v1,v2〉 and 〈v2,v3〉 under
the sum-aggregation?

Nebel, Lindner, Engesser – MAS 16 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

CA∗

Problems with A∗ on MAPF state space:
super-exponential state space, i.e., m!/(m−n)! with m
nodes and n agents;
huge branching factor: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time
Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable with this method!

Nebel, Lindner, Engesser – MAS 17 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v1), (0 : v3), (1 : v2), (2−n : v4)
Plan for S: wait, (S,v1,v2), (S,v2,v3)
Reservation table: (0 : v1), (0 : v3), (1 : v2), (2−n : v5),
(1 : v1), (2 : v2), (3−n : v3)
Not solvable with different order!

Nebel, Lindner, Engesser – MAS 18 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

BIBOX

BIBOX is a rule-based algorithm that is complete on all
bi-connected graphs with at least two unoccupied nodes in the
graph.

Definition
A graph G = (V ,E) is connected iff |V | ≥ 2 and there is path
between each pair of nodes s, t ∈ V . A graph is bi-connected iff
|V | ≥ 3 and for each v ∈ V , the graph (V −{v},E′) with
E′ =

{
{x,y} ∈ E | x,y 6= v

}
is connected.

Nebel, Lindner, Engesser – MAS 19 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Loop decomposition

Every bi-connected graph can be constructed from a cycle by
adding loops iteratively.

C0 L1

L2

A loop decomposition into a basic cycle and additional loops can
be done in time O(|V |2).
Let us name them C0, L1, L2, . . . , where the index depends on
the time when the loop is added.

Nebel, Lindner, Engesser – MAS 20 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Moving unoccupied nodes and agents around

–
a1

–
–

–

–

– a1

–
–

–

C0 L1

L2

An unoccupied place can be sent to any node.
Any agent can be sent to any node by rotating the agents in
a cycle or in the loop.
This can be done without disturbing loops with a higher
index than the one the agent starts and finishes in.

Nebel, Lindner, Engesser – MAS 21 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Filling loops

Starting with highest-index loop: Move agents to destination
loop, then shift agents to their destinations.
Special case: When agents are already in the destination
loop, they have to be rotated out of the loop.

–
–

–

–

–

a1

–
a1 –

a2
–
a3

–
a4

L2

When done with one loop, repeat for next one with next
lower index.

Nebel, Lindner, Engesser – MAS 22 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Reordering agents in the cycle

Assumption: The destinations for the empty places are in
the cycle C0 (can be relaxed).
If the agents are in the right order, just rotate them to their
destinations.
Otherwise reorder by successively take one out and
re-insert.

a9
a7

a10 a7
a9

a8 a8

a10

–

–
–

– –

–

C0

Nebel, Lindner, Engesser – MAS 23 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

A∗ -based
algorithm

Cooperative A∗

BIBOX

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Runtime and plan length estimation

Moving an empty place around is in O(|V |) steps.
Moving one agent to an arbitrary position can be done in
O(|V |2) steps.
Moving one agent to its final destination in a loop needs
O(|V |2).
Since this has to be done O(|V |) times, we need overall
O(|V |3) steps.
Reordering in the final cycle is also bounded by O(|V |3).

→ Runtime and number of steps is bounded by O(|V |3).

Nebel, Lindner, Engesser – MAS 24 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Computational Complexity of MAPF

Existence: For arbitrary graphs with at least one empty
place, the problem is polynomial (O(|V |3) using
Kornhauser’s algorithm). For BIBOX on bi-connected with at
least two empty places also cubic, but smaller constant.
Generation: O(|V |3), generating the same number of steps,
again using Kornhauser’s algorithm or BIBOX (on a smaller
instance set).
Bounded existence: Is definitely in NP

If there exists a solution, then it is polynomially bounded.
A solution candidate can be checked in polynomial time for
satisfying the conditions of being a movement plan with k of
steps or less.

Question: Is the problem also NP-hard?

Nebel, Lindner, Engesser – MAS 25 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)
Given a set of elements U and a collection of subsets C = {sj}
with sj ⊆ U and |sj | = 3. Is there a sub-collection of subsets
C′ ⊆ C such that

⋃
s∈C′ s = U and all subsets in C′ are pairwise

disjoint, i.e., sa∩ sb = /0 for each sa,sb ∈ C′ with sa 6= sb?

X3C is NP-complete.

Example
U = {1,2,3,4,5,6}
C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}
C′1 = {{1,2,3},{2,3,4}} is not a cover.
C′2 = {{1,2,3},{2,3,4},{1,5,6}} is not an exact cover.
C′3 = {{2,3,4},{1,5,6}} is an exact cover.

Nebel, Lindner, Engesser – MAS 26 / 81

Motivation

MAPF
Definition and
example

MAPF Variations

MAPF Algorithms

Computational
Complextiy of
MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

NP-hardness of MAPF: Reduction from X3C

C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}

a1
b1

b1

a1
a2
b2

b2

a2
a3
b3

b3

a3
a4
b4

b4

a4
a5
b5

b5

a5
a6
b6

b6

a6

s1s1 s2s2 s3 s3 s4 s4

Claim: There is an exact cover by 3-sets iff the constructed
MAPF instance can be solved in at most k = 11/3|U| moves.

Nebel, Lindner, Engesser – MAS 27 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

3 Distributed MAPF

Implicit coordination
Joint execution
Agent types
Conservative replanning

Nebel, Lindner, Engesser – MAS 29 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Going beyond MAPF

In MAPF, planning is performed centrally, then the plan is
communicated to all agents and execution is done
decentrally.
What if there is no central instance and communication of
plans is impossible?
In this setting, which we call DMAPF, we assume that
everybody wants to achieve the common goal of reaching
all destinations.

→ Each agent needs to plan decentrally.
⇒ What kind of plans do we need to generate?
⇒ How do we define the joint execution of such plans?

Nebel, Lindner, Engesser – MAS 30 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Implicitly coordinated plans (in a cooperative
setting)

An agent plans its own actions . . .
. . . in a way to empower the other agents to reach the
common goal.
This implies to plan for the other agents.
We consider one possibility for the other agent to continue
the plan, i.e., the plan will be a linear plan.
We assume that plans are non-redundant, i.e., that they are
cycle-free.
Executing such a plan will thus never lead to a dead end,
i.e., a state from which the other agents cannot reach the
common goal.
However, almost certainly, agents will come up with
different (perhaps conflicting) plans.
How do we define joint execution of such conflicting plans?

Nebel, Lindner, Engesser – MAS 31 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Example: Two implicitly coordinated plans

v1 v2 v3

v4

How to solve the problem?

πC = 〈(C,v3,v2), (C,v2,v4), (S,v1,v2), (S,v2,v3), (C,v4,v2)〉
πS = 〈(S,v1,v2), (S,v2,v4), (C,v3,v2), (C,v2,v1), (S,v4,v2),

(S,v2,v3), (C,v1,v2)〉

Nebel, Lindner, Engesser – MAS 32 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Joint execution

Let us assume, all agents have planed and a subset of
them came up with a family of plans (πi)i∈A.
Among the agents that have a plan with their own action as
the next action to execute, one is chosen.
The action of the chosen agent is executed.
Agents, which have anticipated the action, track that in their
plans.
All other agents have to replan from the new state.
Since everybody has a successful plan, no acting agent will
ever execute an action that leads to a dead end.

Nebel, Lindner, Engesser – MAS 33 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Example execution

v1 v2 v3

v4

Planning, executing, and replanning:

1.C : 〈(C,v3,v2),(C,v2,v4),(S,v1,v2),(S,v2,v3),(C,v4,v2)〉
2.S : 〈(S,v1,v2), (S,v2,v4), (C,v3,v2), (C,v2,v1), (S,v4,v2),

(S,v2,v3), (C,v1,v2)〉
3.C : 〈(C,v2,v4),(S,v1,v2),(S,v2,v3),(C,v4,v2)〉

Done!

Nebel, Lindner, Engesser – MAS 34 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Lazy and eager agents

What can go wrong?
Agents could be lazy: Sometimes they choose a plan where
they expect that another agent should act, although they
could act.

→ Agents may wait forever for each other to act (dish washing
dilemma).
Agents could be eager: If agents could act (without creating
a cycle or a dead end), they choose to act.

→ Agents might create cyclic executions (without creating
plans that are cyclic), leading to infinite executions.

Nebel, Lindner, Engesser – MAS 35 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Example for infinite execution

v1 v2 v3

v4

v5v6v7

v8

π1 (S initially): 〈 (S,v2,v3), (S,v3,v4), (S,v4,v5), (C,v6,v7), . . .〉
π2 (C initially): 〈 (C,v6,v5), (C,v5,v4), (C,v4,v3), (S,v2,v1), . . .〉
π3 (C after (S,v2,v3)): 〈 (C,v6,v5), (C,v5,v4), (S,v3,v2), (C,v4,v3), . . .〉
π4 (S after (C,v6,v5)): 〈 (S,v3,v2),(S,v2,v1), (S,v1,v8), (S,v8,v7), . . .〉
π5 (C after (S,v3,v2)): 〈 (C,v5,v6),(C,v6,v7), (C,v7,v8), (C,v8,v1), . . .〉
π5 (S after (C,v5,v6)): 〈 (S,v2,v3), . . .〉

Nebel, Lindner, Engesser – MAS 36 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Optimally eager agents

Eager agents avoid deadlocks, however they are
hyper-active.
They might even move away from their destination!
So, let force them to be smart: They should generate only
optimal plans . . . and among those optimal plans they
should also be eager.
In our previous example: After the square agent moved
right, the circle agent will choose to move left!

→ Does it always work out?

Nebel, Lindner, Engesser – MAS 37 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Optimally eager agents are always successful

Theorem
Optimally eager agents are always successful on all solvable
DMAPF instances.

Proof.
By induction over the length of a shortest plan k.
k=0: Obviously true.
Assume the claim is true for k. Consider a DMAPF instance
such that there exists a shortest plan of length k +1. Because
the agents are eager, at least one agent wants to move. One
agent will move (according to an optimal plan) and by this
reduce the necessary number of steps by one. Hence, we have
now an instance with plan length k and the induction hypothesis
applies.

Nebel, Lindner, Engesser – MAS 38 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Conservative replanning

Optimally eager agents have to solve a sequence of
NP-hard problems.
Is it possible to solve the problem more efficiently?
Conservative replanning: Always start at the initial state and
consider the already executed movements as a prefix of the
new plan.

→ Avoids infinite executions because plans have to be
cycle-free.

⇒ The agents might visit the entire state space
a1 a2 a3 an

a1 a2 a3 an

Assume agents are selected for execution following a
pattern similar to a Gray counter.

Nebel, Lindner, Engesser – MAS 39 / 81

Motivation

MAPF

Distributed
MAPF
Implicit coordination

Joint execution

Agent types

Conservative
replanning

MAPF/DU

Summary &
Outlook

Literature

Other ways to coordinate?

One way to avoid NP-hardness or exponentially longer
plans might be to use polynomial-time approximation
algorithms. However, if different such algorithm are used,
also an exponential blowup could result.
Is it possible to use the rule-based algorithms (which are
polynomial)?
Assume that everybody uses the same algorithm: Of
course, the agents would act in coordinated way, but this
more like central planning.
If the agents may use different algorithms, then it is not
clear how to avoid cyclic executions.
Conservative replanning is not helpful in this context,
because the executed actions might not be a prefix of a
valid plan!

Nebel, Lindner, Engesser – MAS 40 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

4 MAPF/DU: MAPF under destination
uncertainty

Implicitly Coordinated Branching Plans
Strong plans
Stepping Stones
Execution cost
Execution guarantees
Computational Complexity: Reminder
Computational Complexity of MAPF/DU

Nebel, Lindner, Engesser – MAS 42 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

MAPF/DU: MAPF under destination
uncertainty

MAPF under destination uncertainty (MAPF/DU):
The common goal of all agents is that everybody reaches
its destination.
All agents know their own destinations, but these are not
common knowledge any longer.
For each agent, there exists a set of possible destinations,
which are common knowledge.
All agents plan and re-plan without communicating with
their peers.
A success announcement action becomes necessary,
which the agents may use to announce that they have
reached their destination (and after that they are not
allowed to move anymore).

→ Models multi-robot interactions without communication
Nebel, Lindner, Engesser – MAS 43 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

MAPF/DU: Conceptual problems

We need a solution concept for the agents: implicitly
coordinated branching plans.
We need to find conditions that guarantee success of joint
execution.
We have to determine the computational complexity for
finding plans and deciding solvability.

→ Since MAPF/DU is a special case of epistemic planning
(initial state uncertainty which is monotonically decreasing),
we can use concepts and results from this area.

Nebel, Lindner, Engesser – MAS 44 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

MAPF/DU representation & state space

In addition to the sets of agents A, the graph G = (V ,E), and
the assignment of agents to nodes α , we need a function to
represent the possible destinations β : A→ 2V .
We assume that the set of possible destinations are
pairwise disjoint (this can be relaxed, though).
An objective state is given by the pair s = 〈α,β 〉
representing the common knowledge of all agents.
A subjective state of agent i is given by si〈α,β , i,v〉 with
v ∈ β (i), representing the private knowledge of agent i.
A MAPF/DU instance is given by 〈A,G,s0,α∗〉, where
s0 = 〈α0,β0〉.

Nebel, Lindner, Engesser – MAS 45 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

MAPF/DU: Implicitly coordinated branching
plans

v1 v2

v3v4

Square agent S wants to go to v3 and
knows that circle agent C wants to go to
v1 or v4.
C wants to go to v4 and knows that S
wants to go to v2 or v3.
Let us assume S forms a plan in which it
moves in order to empower C to reach
their common goal.
S needs shifting its perspective in order
to plan for all possible destinations of C
(branching on destinations).
Planning for C, S must forget about its
own destination.

Nebel, Lindner, Engesser – MAS 46 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Branching plans: Building blocks

Branching plans consist of:
Movement actions: (〈agent〉,〈sourcenode〉,〈targetnode〉),
i.e., a movement of an agent
Success announcement: (〈agent〉,S), after that all agents
know that the agent has reached its destination and it
cannot move anymore
Perspective shift: [〈agent〉 : . . .], i.e., from here on we
assume to plan with the knowledge of agent 〈agent〉. This
can be unconditional or conditional on 〈agent〉’s
destinations.
Branch on all destinations:
(?〈dest1〉{. . .}, . . . ,?〈destn〉{. . .}), where all destinations of
the current agent have to be listed. For each case we try to
find a successful plan to reach the goal state.

Nebel, Lindner, Engesser – MAS 47 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Semantics of branching plans

Movement actions modify α in the obvious way.
A success announcement of agent i transforms β to β ′ such
that β ′(i) = /0 in order to signal that i cannot move anymore.
A perspective shift from i to j with subsequent branching on
destinations transforms the subjective state si = 〈α,β , i,vi〉
to a set of subjective states sjk = 〈α,β , j,vjk 〉 with all
vjk ∈ β (j).
A perspective shift from i to j without subsequent branching
on destinations induces the same transformation, but
enforces that the subsequent plans are the same for all
states subjective states sjk .

Nebel, Lindner, Engesser – MAS 48 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Branching plan: Example

v1 v2

v3v4

(S,v1,v4)

C:

(C,v2,v1) (C,v2,v1)

S:

?v1 ?v4

(C,S) (S,v4,v3)

?v2

(S,v4,v3)

?v3

(S,S)

C:

(C,v1,v4)
?v4

(C,S)
?v1

(C,S)

S:

(S,v4,v3) (S,v4,v3)
?v2 ?v3

(S,v3,v2) (S,S)

(S,S)

(S,v3,v2)

(S,S)

C:

(C,v1,v4)
?v4

(C,S)

(C,S)
?v1

Nebel, Lindner, Engesser – MAS 49 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Strong plans

Similar to the notion of strong plans in non-deterministic
single-agent planning, we define i-strong plans for an agent i to
be:

cycle-free, i.e., not visiting the same objective state twice;
always successful, i.e. always ending up in a state such that
all agents have announced success;
covering, i.e., for all combinations of possible destinations
of agents different from i, success can be reached.

Nebel, Lindner, Engesser – MAS 50 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Subjectively and objectively strong plans

A plan is called subjectively strong if it is i-strong for some
agent i.
A plan is called objectively strong if it is i-strong for each
agent i.
An instance is objectively or subjectively solvable if there
exists an objectively or subjectively strong plan,
respectively.

v1 v2 v3 v4 v5

v6

→ There does not exist a T -strong plan, but an S- and a
C-strong plan.
Difference between subjective and objective solvability
concerns only the first acting agent!

Nebel, Lindner, Engesser – MAS 51 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Structure of strong plans: Stepping stones

A stepping stone for agent i is a state in
which i can move to each of its possible
destinations, announcing success, and
afterwards, for each possible
destination, there exists an i-strong plan
to solve the resulting states.
S can create a stepping stone for C by
moving from v1 via v4 to v3.
C can now move to v1 or v4 and
announce success.
In each case, S can move afterwards to
its destination (or stay) and announce
success.

v1 v2

v3v4

Nebel, Lindner, Engesser – MAS 52 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Stepping Stone Theorem

Theorem
Given an i-solvable
MAPF/DU instance, there
exists an i-strong
branching plan such that
the only branching points
are those utilizing
stepping stones.

Proof sketch.
Remove non-stepping stone
branching points by picking
one branch without success
announcement.

Proof by example
(S,v1,v4)

C:

(C,v2,v1) (C,v2,v1)

S:

?v1 ��?v4

(C,S) (S,v4,v3)

?v2

(S,v4,v3)

?v3

(S,S)

C:

(C,v1,v4)
?v4

(C,S)
?v1

(C,S)

S:

(S,v4,v3) (S,v4,v3)
?v2 ?v3

(S,v3,v2) (S,S)

(S,S)

(S,v3,v2)

(S,S)

C:

(C,v1,v4)
?v4

(C,S)

(C,S)
?v1

Nebel, Lindner, Engesser – MAS 53 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Execution cost

The execution cost of a branching plan is the number of atomic
actions of the longest execution trace.

Theorem
Given an i-solvable MAPF/DU instance over a graph G = (V ,E),
then there exists an i-strong branching plan with execution cost
bounded by O(|V |4).

Proof sketch.
Direct consequence of the stepping stone theorem and the
maximal number of movements in the MAPF problem.

Nebel, Lindner, Engesser – MAS 54 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Joint execution and execution guarantees

Joint execution is defined similarly to the fully observable
case: One agent is chosen; afterwards the plan is tracked
or the agent has to replan.
In the MAPF/DU framework not all agents might have a
plan initially!
One might hope that optimally eager agents are always
successful.
In epistemic planning this was proven to be true only in the
uniform knowledge case.
We do not have uniform knowledge . . . and indeed,
execution cycles cannot be excluded.

Nebel, Lindner, Engesser – MAS 55 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

A counter example

v1:1

v3:(2) 2
v5

v6

1v2
v4

v9:2

v7 v8:(1)
6 3 6

A number on an edge means that there are as many nodes on a line.

Agent 2 has a shortest eager plan moving first to v6.
Agent 1 has then a shortest eager plan moving first to v4.
Agent 2 has then a shortest eager plan moving first to v5.
Agent 1 has then a shortest eager plan moving first to v2.

Nebel, Lindner, Engesser – MAS 56 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Conservatism

Perhaps conservatism can help!
Similarly to DMAPF, conservative replanning means that
the already executed actions are used as a prefix in the
plan to be generated.
Differently from DMAPF, we assume that after a success
announcement, the initial state is modified so that the real
destination of the agent is known in the initial state.
Otherwise we could not solve instances that are only
subjectively solvable.

Nebel, Lindner, Engesser – MAS 57 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Conservative, optimally eager agents

Conservative, eager agents are always successful, but
might visit the entire state space before terminating.
Adding optimal eagerness can help to reduce the execution
length.

Theorem
For solvable MAPF/DU instances, joint execution and replanning
by conservative, optimally eager agents is always successful and
the execution length is polynomial.

Proof idea.
After the second agent starts to act, all agents have an identical perspective
and for this reason produce objectively strong plans with the same execution
costs, which can be shown to be bounded polynomially using the stepping
stone theorem.

Nebel, Lindner, Engesser – MAS 58 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Conservative replanning example

v1 v2

v3v4

Assume S moves first to v4.
Assume C re-plans. From now on, in
replanning from the beginning, it has to
do a perspective shift to S, because it
now has to extend the partial plan
starting with (S,v4,v1), i.e., it has to
create an objectively strong plan.
Assume that C moves now to v1.
From now on, also S has to make a
perspective shift to C, effectively
“forgetting” its own destination, i.e., it
also has to create a objectively strong
plan.

Nebel, Lindner, Engesser – MAS 59 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Complexity
classes P and NP

NP-completeness

The class co-NP

The class
PSPACE

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational Complexity:
Algorithms and Turing machines

We use Turing machines as formal models of algorithms
This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic one:
DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:
NDTM

Nebel, Lindner, Engesser – MAS 60 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Complexity
classes P and NP

NP-completeness

The class co-NP

The class
PSPACE

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational Complexity:
Problems, solutions, and complexity

A problem is a set of pairs (I,A) of strings in {0,1}∗.
I: instance; A: answer
If all answers A ∈ {0,1}: decision problem
A decision problem is the same as a formal language:
the set of strings formed by the instances with answer 1
An algorithm solves (or decides) a problem if it computes
the right answer for all instances.
Complexity of an algorithm: function

T : N→N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance
Complexity of a problem: complexity of the most efficient
algorithm that solves this problem.

Nebel, Lindner, Engesser – MAS 61 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Complexity
classes P and NP

NP-completeness

The class co-NP

The class
PSPACE

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational Complexity:
Complexity classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very large)
In practice, a reasonable definition

The class of problems decidable on non-deterministic
Turing machines in polynomial time, i.e., having a poly.
length accepting computation for all positive instances: NP
More classes are definable using other resource bounds on
time and memory

Nebel, Lindner, Engesser – MAS 62 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Complexity
classes P and NP

NP-completeness

The class co-NP

The class
PSPACE

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational Complexity:
Upper and lower bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand

Nebel, Lindner, Engesser – MAS 63 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Complexity
classes P and NP

NP-completeness

The class co-NP

The class
PSPACE

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational Complexity:
Polynomial reduction

Given languages L1 and L2, L1 can be polynomially
reduced to L2, written L1 ≤p L2, if there exists a polynomial
time-computable function f such that

x ∈ L1 ⇐⇒ f (x) ∈ L2.

Rationale: it cannot be harder to decide L1 than L2
L is hard for a class C (C-hard) if all languages of this class
can be reduced to L.
L is complete for C (C-complete) if L is C-hard and L ∈ C.

Nebel, Lindner, Engesser – MAS 64 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Complexity
classes P and NP

NP-completeness

The class co-NP

The class
PSPACE

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational Complexity:
NP-complete problems

A problem is NP-complete iff it is NP-hard and in NP.
Example: SAT (the satisfiability problem for propositional
logic) is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying truth
assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems

Nebel, Lindner, Engesser – MAS 65 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Complexity
classes P and NP

NP-completeness

The class co-NP

The class
PSPACE

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational Complexity:
The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
In other words: Checking a proposed solution (of poly size)
is easy.
What if we want to decide UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {L⊆ Σ∗ : Σ∗ \L ∈ C} (provided Σ is our
alphabet)
co-NP = {L⊆ Σ∗ : Σ∗ \L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP
Nebel, Lindner, Engesser – MAS 66 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Complexity
classes P and NP

NP-completeness

The class co-NP

The class
PSPACE

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational Complexity:
PSPACE

There are problems even more difficult than NP and co-NP. . .

Definition ((N)PSPACE)
PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing machines
using only polynomially many tape cells.

Some facts about PSPACE:
PSPACE is closed under complements (. . . as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space: Savitch’s
Theorem)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP 6=PSPACE, but it is believed that
this is true.

Nebel, Lindner, Engesser – MAS 67 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Complexity
classes P and NP

NP-completeness

The class co-NP

The class
PSPACE

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational Complexity:
PSPACE-completeness

Definition (PSPACE-completeness)
A decision problem (or language) is PSPACE-complete if it is in
PSPACE and all other problems in PSPACE can be polynomially
reduced to it.

Intuitively, PSPACE-complete problems are the “hardest”
problems in PSPACE (similar to NP-completeness). They appear
to be “harder” than NP-complete problems from a practical point
of view.
An example for a PSPACE-complete problem is the NDFA
equivalence problem:

Instance: Two non-deterministic finite state automata A1 and
A2.

Question: Are the languages accepted by A1 and A2
identical?

Nebel, Lindner, Engesser – MAS 68 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Computational complexity of MAPF/DU
bounded plan existence

Theorem
Deciding whether there exists an eager MAPF/DU i-strong or
objectively strong plan with execution cost k or less is
PSPACE-complete.

Proof sketch.

Since plans have polynomial depth,
all execution traces can be
generated non-deterministically
and tested using only polynomial
space, i.e., PSPACE-membership.
For hardness, reduction from QBF.
Example construction for
∀x1∃x2∀x3 :
(x1∨ x2∨¬x3)∧ (¬x1∨ x2∨ x3)

x1
v1:f1

x2
v2:f2

x3
v3:f3

f1
v4

f2
v5:f4

f3
v6:f5

c1
v7:f6

f4
v8

f5
v9

f6
v10

c2
v11

vT1,2:(x1) vT1,1

vF1,2:(x1) vF1,1

vT2,2

vT2,1

vF2,2 vF2,1

x′2 v∃2 :x2

vT3,2:(x3) vT3,1

vF3,2:(x3) vF3,1

k = 30

v ′∃2 :x′2

vc2 :c2

vc1 :c1

choice sequencer

clause evaluatorcollector

Nebel, Lindner, Engesser – MAS 69 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

The reduction enlarged

∀x1∃x2∀x3 :
(x1∨ x2∨¬x3)∧ (¬x1∨ x2∨ x3)

x1
v1:f1

x2
v2:f2

x3
v3:f3

f1
v4

f2
v5:f4

f3
v6:f5

c1
v7:f6

f4
v8

f5
v9

f6
v10

c2
v11

vT1,2:(x1) vT1,1

vF1,2:(x1) vF1,1

vT2,2

vT2,1

vF2,2 vF2,1

x′2 v∃2 :x2

vT3,2:(x3) vT3,1

vF3,2:(x3) vF3,1

k = 30

v ′∃2 :x′2

vc2 :c2

vc1 :c1

choice sequencer

clause evaluatorcollector

Nebel, Lindner, Engesser – MAS 70 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

Complexity with a fixed number of agents

These results probably imply that the technique could not be
used online.

For a fixed number of agents, however, the bounded planning
problem is polynomial.

Theorem
For a fixed number c of agents, deciding whether there exists a
MAPF/DU i-strong or objectively strong plan with execution cost
of k or less can be done in time O(nc2+c).

That means, for two agents, it takes “only” O(n6) time – but in
practice it should be faster.

Nebel, Lindner, Engesser – MAS 71 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU
Implicitly
Coordinated
Branching Plans

Strong plans

Stepping Stones

Execution cost

Execution
guarantees

Computational
Complexity:
Reminder

Computational
Complexity of
MAPF/DU

Summary &
Outlook

Literature

An algorithm for generating an objective
MAPF/DU plan for two agents

1 Determine in the state space of all node assignments the
distance to the initial state using Dijkstra: O(|V |4) time.

2 For each of the O(|V |2) configurations check, whether it is a
potential stepping stone for one agent, i.e., whether all
potential destinations of this agent are reachable using
Dijkstra on the modified graph, where the other agent
blocks the way: O(|V |4) time.

3 For all O(|V |2) potential stepping stones, check whether for
each of the O(|V |) possible destination of the first agent,
the second agent can reach its possible destinations and
use Dijkstra to compute the shortest path: altogether
O(|V |5) time.

4 Consider all stepping stones and minimize over the
maximum plan depth. Among the minimal plans select
those that are eager for the planning agent.

Nebel, Lindner, Engesser – MAS 72 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

5 Summary & Outlook

Nebel, Lindner, Engesser – MAS 74 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Summary

DMAPF generalizes the MAPF problem by dropping the
assumption that plans are generated centrally and then
communicated.
MAPF/DU generalizes the MAPF problem further by
dropping the assumptions that destinations are common
knowledge.
A solution concept for this setting are i-strong branching
plans corresponding to implicitly coordinated policies in the
area of epistemic planning.
The backbone of such plans are stepping stones.
Joint execution can be guaranteed to be successful and
polynomially bounded if all agents are conservative and
optimally eager.
While plan existence in general is PSPACE-complete, it is
polynomial for a fixed number of agents.

Nebel, Lindner, Engesser – MAS 75 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Outlook

→ Do the results still hold for planar graphs?
Is MAPF/DU plan existence also PSPACE-complete?
How would more general forms of describing the common
knowledge about destinations affect the results?

→ Overlap of destinations or general Boolean combinations
Can we get similar results for other execution semantics?

→ Concurrent executions of actions
Can we be more aggressive in expectations about possible
destinations?

→ Use forward induction, i.e., assume that actions in the past
were rational.
Are other forms of implicit coordination possible?

→ More communication? Coordination in competitive
scenarios?

Nebel, Lindner, Engesser – MAS 76 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

6 Literature

Nebel, Lindner, Engesser – MAS 78 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Literature (1)

D. Kornhauser, G. L. Miller, and P. G. Spirakis.
Coordinating pebble motion on graphs, the diameter of permutation
groups, and applications.
In 25th Annual Symposium on Foundations of Computer Science
(FOCS-84), pages 241–250, 1984.

O. Goldreich.
Finding the shortest move-sequence in the graph-generalized 15-puzzle
is NP-hard.
In Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation, pages 1–5. 2011.

Nebel, Lindner, Engesser – MAS 79 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Literature (2)

H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. HÃűnig, T. K. Satish Kumar,
T. Uras, H. Xu, C. A. Tovey, G. Sharon:
Overview: Generalizations of Multi-Agent Path Finding to Real-World
Scenarios.
CoRR abs/1702.05515, 2017.
A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg, G.
Sharon, N. R. Sturtevant, G. Wagner, and P. Surynek.
Search-Based Optimal Solvers for the Multi-Agent Pathfinding Problem:
Summary and Challenges.
In Proceedings of the Tenth International Symposium on Combinatorial
Search (SOCS-17), pages 29–37, 2017.

P Surynek.
A novel approach to path planning for multiple robots in bi-connected
graphs.
In Proc. 2009 IEEE International Conference on Robotics and
Automation, ICRA 2009, pages 3613–3619, 2009.

Nebel, Lindner, Engesser – MAS 80 / 81

Motivation

MAPF

Distributed
MAPF

MAPF/DU

Summary &
Outlook

Literature

Literature (3)

B. Nebel, T. Bolander, T. Engesser and R. Mattmüller.
Implicitly Coordinated Multi-Agent Path Finding under Destination
Uncertainty.
Accepted to be published in Journal of Artificial Intelligence research.

T. Bolander, T. Engesser, R. Mattmüller and B. Nebel.
Better Eager Than Lazy? How Agent Types Impact the Successfulness of
Implicit Coordination.
In Proceedings of the Sixteenth Conference on Principles of Knowledge
Representation and Reasoning (KR-18), pages 445-453. 2018.

T. Engesser, T. Bolander, R. Mattmüller, and B. Nebel.
Cooperative epistemic multi-agent planning for implicit coordination.
In Proceedings of the Ninth Workshop on Methods for Modalities
(M4MICLA-17), pages 75–90, 2017.

Nebel, Lindner, Engesser – MAS 81 / 81

	Motivation
	Multi-agent path finding (MAPF)
	Definition and example
	MAPF Variations
	MAPF Algorithms
	Computational Complextiy of MAPF

	Distributed MAPF
	Implicit coordination
	Joint execution
	Agent types
	Conservative replanning

	MAPF/DU: MAPF under destination uncertainty
	Implicitly Coordinated Branching Plans
	Strong plans
	Stepping Stones
	Execution cost
	Execution guarantees
	Computational Complexity: Reminder
	Computational Complexity of MAPF/DU

	Summary & Outlook
	Literature

