
Multi-Agent Systems

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
Winter Term 2018/19



Agent Architectures

Definition: Agent Architecture
An agent architecture proposes a particular methodology for
building an autonomous agent: Set of component modules and
interaction of these modules determines how perception and
current state of the agent determine its next action and next
internal state.

Nebel, Lindner, Engesser – MAS 2 / 41



Agents: Standard View

  Agent Environment

percepts
Sensors

Internal representation
of the world state

Next action 
(intention/plan)

Actuator actions

Objects

Surfaces

Matter

Other Agents

Nebel, Lindner, Engesser – MAS 3 / 41



Table-Driven Agent

function Table-Driven-Agent(percept)
global table,percepts
percepts← append(percepts,percept)
action← LookUp(percepts, table)
return action

end function

Epistemic state is the list of percepts so far perceived.
Practical reasoning based on look-up table.
How large will the look-up table grow?

Nebel, Lindner, Engesser – MAS 4 / 41



Simple Reflex Agent

function Simple-Reflex-Agent(percept)
global rules
state← Interpret-Input(percept)
rule← Rule-Match(state, rules)
action← Rule-Action(rule)
return action

end function

Epistemic state is just the current percept.
Practical reasoning based on condition-action rules.

Nebel, Lindner, Engesser – MAS 5 / 41



Swarms of Simple Reflex Agents

Swarm formation control: How to design programs that
result into a particular swarm formation when executed on
each simple reflex agent. Video: EPFL Formation

Nebel, Lindner, Engesser – MAS 6 / 41

file:///home/felix/git/teaching.MAS_2017/videos/EPFL.mp4


Formation Control: General Setting

Problem
Form an approximation of a simple geometric object (shape)
Problem not yet solved in general!
Algorithms exists that make simplifying assumptions about
the agents’ capabilities and the shape.

Assumptions shared by the algorithms proposed by
Sugihara & Suzuki (1996)

Each robot can see all the other robots
Shapes are connected
But ...
Total number of robots unknown
No common frame of reference (i.e., one cannot program
the robots “to meet at point (X ,Y )” or “to move north”)
robots cannot communicate with each other
Local decision making

Nebel, Lindner, Engesser – MAS 7 / 41



Formation Control: CIRCLE

Problem: Move a group of robots such that they will
eventually approximate a circle of a given diameter D.

Algorithm [Sugihara & Suzuki, 1996]: The robot R
continuously monitors the position of a farthest robot Rfar
and a nearest robot Rnear , and the distance d between R
(itself) and Rfar .

1 If d > D, then R moves towards Rfar
2 If d < D−δ , then R moves away from Rfar
3 If D−δ ≤ d ≤ D, then R moves away from Rnear

Nebel, Lindner, Engesser – MAS 8 / 41



Formation Control: CIRCLE

Problem: Move a group of robots such that they will
eventually approximate a circle of a given diameter D.

Algorithm [Sugihara & Suzuki, 1996]: The robot R
continuously monitors the position of a farthest robot Rfar
and a nearest robot Rnear , and the distance d between R
(itself) and Rfar .

1 If d > D, then R moves towards Rfar
2 If d < D−δ , then R moves away from Rfar
3 If D−δ ≤ d ≤ D, then R moves away from Rnear

Nebel, Lindner, Engesser – MAS 8 / 41



Formation Control: POLYGON

Problem: Move a group of N robots such that they will
eventually approximate an n� N-sided polygon.

Algorithm [Sugihara & Suzuki, 1996]:
1 Run the CIRCLE algorithm until each robot R can recognize

its immediate left neighbor l(R) and right neighbor r(R).
2 Selection of n robots to be the vertices of the n-sided

polygon.
3 All robots R execute the CONTRACTION algorithm

1 Continuously monitor the position of l(R) and r(R)
2 Move toward the midpoint of the segment l(R)r(R)

Nebel, Lindner, Engesser – MAS 9 / 41



Formation Control: POLYGON

Problem: Move a group of N robots such that they will
eventually approximate an n� N-sided polygon.

Algorithm [Sugihara & Suzuki, 1996]:
1 Run the CIRCLE algorithm until each robot R can recognize

its immediate left neighbor l(R) and right neighbor r(R).
2 Selection of n robots to be the vertices of the n-sided

polygon.
3 All robots R execute the CONTRACTION algorithm

1 Continuously monitor the position of l(R) and r(R)
2 Move toward the midpoint of the segment l(R)r(R)

Nebel, Lindner, Engesser – MAS 9 / 41



Formation Control: FILLCIRCLE

Problem: Move a group of robots such that they will
eventually distribute nearly uniformly within a circle of
diameter D.

Algorithm [Sugihara & Suzuki, 1996]: The robot R
continously monitors the position of a farthest robot Rfar and
a nearest robot Rnear , and the distance d between R (itself)
and Rfar .

1 If d > D, then R moves toward Rfar .
2 If d ≤ D, then R moves away from Rnear .

Nebel, Lindner, Engesser – MAS 10 / 41



Formation Control: FILLCIRCLE

Problem: Move a group of robots such that they will
eventually distribute nearly uniformly within a circle of
diameter D.

Algorithm [Sugihara & Suzuki, 1996]: The robot R
continously monitors the position of a farthest robot Rfar and
a nearest robot Rnear , and the distance d between R (itself)
and Rfar .

1 If d > D, then R moves toward Rfar .
2 If d ≤ D, then R moves away from Rnear .

Nebel, Lindner, Engesser – MAS 10 / 41



Formation Control: FILLPOLYGON

Problem: Move a group of N robots such that they will
eventually distribute nearly uniformly within an n� N-sided
convex polygon.

Algorithm [Sugihara & Suzuki, 1996]: First n robots are
picked as vertices of the polygon and moved to the desired
position. All other robots R execute FILLPOLYGON:

1 If, as seen from R, all other robots lie in a wedge whose
apex angle is less than π , then R moves into the wedge
along the bisector of the apex.

2 Otherwise, R moves away from the nearest robot.

Nebel, Lindner, Engesser – MAS 11 / 41



Formation Control: FILLPOLYGON

Problem: Move a group of N robots such that they will
eventually distribute nearly uniformly within an n� N-sided
convex polygon.

Algorithm [Sugihara & Suzuki, 1996]: First n robots are
picked as vertices of the polygon and moved to the desired
position. All other robots R execute FILLPOLYGON:

1 If, as seen from R, all other robots lie in a wedge whose
apex angle is less than π , then R moves into the wedge
along the bisector of the apex.

2 Otherwise, R moves away from the nearest robot.

Nebel, Lindner, Engesser – MAS 11 / 41



Formation Control: LINE

Problem: Move a group of robots such that they will
eventually connect to points. (In fact, just a special case of
FILLPOLYGON.)

Algorithm [Sugihara & Suzuki, 1996]: First, two robots are
picked as vertices of the line and moved to the desired
position. All other robots R execure FILLPOLYGON.

Nebel, Lindner, Engesser – MAS 12 / 41



Formation Control: LINE

Problem: Move a group of robots such that they will
eventually connect to points. (In fact, just a special case of
FILLPOLYGON.)

Algorithm [Sugihara & Suzuki, 1996]: First, two robots are
picked as vertices of the line and moved to the desired
position. All other robots R execure FILLPOLYGON.

Nebel, Lindner, Engesser – MAS 12 / 41



When Memory Helps

Simple reflex agent’s do not make use of memory. This can
be a severe limitation:

Imagine you are at a crossing and you have to decide to
either go left or right. You go left and find out it’s a dead
end. You return to the crossing. Again, you have the choice
between going left and going right ...
Possible solutions:

Change the environment (pheromones, bread crumbs)
Put your previous actions and experiences into your memory

Nebel, Lindner, Engesser – MAS 13 / 41



Reflex Agent With State

function Reflex-Agent-With-State(percept)
global rules,state
state← Update-State(state,percept)
rule← Rule-Match(state, rules)
action← Rule-Action(rule)
state← Update-State(state,action)
return action

end function

Epistemic state is updated over time (takes both state and
percept into account and thus can also update currently
unobserved aspects).
Practical reasoning is based on rules applied in this state
and leads to another state update.

Nebel, Lindner, Engesser – MAS 14 / 41



Agent-Based Modeling

Definition (Wilensky & Rand, 2015)
Agent-based modeling is a form of computational modeling
whereby a phenomenon is modeled in terms of agents and their
interactions.

Agents are entities that have state variables and values
(e.g., position, velocity, age, wealth)

Gas molecule agent: mass, speed, heading
Sheep agent: speed, weight, fleece

Agents also have rules of behavior
Gas molecule: Rule to collide with another molecule
Sheep: Rule to eat grass

Universal clock: At each tick, all agents invoke their rules.

Nebel, Lindner, Engesser – MAS 15 / 41



Wolves and Moose

The populations of wolves and moose of Isle Royale have been
observed for more than 50 years. Result: Dynamic variation
rather than ‘balance of nature’.

More wolves
... leads to less moose
... leads to less wolves
... leads to more moose.

Nebel, Lindner, Engesser – MAS 16 / 41



Wolves and Moose: Classical Model

Lotka-Volterra model for wolf (w) and moose (m) populations:

δm
δ t

= k1m− k2wm,
δw
δ t

=−k3w + k4k2wm

Nebel, Lindner, Engesser – MAS 17 / 41



Wolves and Moose: Agent-Based Model

Spawn m moose and w wolves and invoke each agent’s
behavior in each loop:

ask moose [move death reproduce-sheep]
ask wolves [move set energy energy - 1 catch-sheep death
reproduce-wolves]

Nebel, Lindner, Engesser – MAS 18 / 41



Discussion: Pros and Cons

Differential Equations

Agent-Based Model

Nebel, Lindner, Engesser – MAS 19 / 41



Discussion: Pros and Cons

Differential Equations
Pro: Mathematically well understood, analytical inference by
using calculus, many tools available (e.g., Matlab)
Con: Hard to explain, models phenomenon rather than
behavior, harder to extend

Agent-Based Model
Pro: Easy to understand and to explain to stakeholders,
models individual beahvior and observes emergent
phenomenon, easy to extend
Con: Tool support improves slowly, no analytical tools
comparable to calculus

Nebel, Lindner, Engesser – MAS 19 / 41



Modeling Traffic

Observation: Traffic on the motorway produces certain
patterns.
Question: Can similar patterns be algorithmically
reproduced?
Agent-Based Simulation approach:

Modeling traffic on the motorway as a multi-agent system
Cars (drivers) as agents

Percepts: Distance to next car in front
Internal State: Current Speed
Actions: Speeding, braking

Nebel, Lindner, Engesser – MAS 20 / 41



Nagel-Schreckenberg Model: Motivation

Research Question: How do traffic jams emerge?
Research Hypothesis: Might be due to the local behaviour
of individual agents.
Approach: Model traffic as a MAS and study the resulting
system’s behavior. If the systems’ behavior matches
empirical phenomenon, then the model might be an
acceptable explanation.

Nebel, Lindner, Engesser – MAS 21 / 41



Cellular Automaton

A cellular automaton is a quad-tuple A =< R,Q,N,δ >

A cell space R
A set Q of states each cell can be in
A neighborhood N : R→ 2R

A transition function δ : Q|N|→ Q
For a probabilistic cellular automaton, δ is a probability
distribution P(r = q|N(r))

The configuration of A can be written as x1x2 . . .xn with xi
being the state of the cell ri .

Nebel, Lindner, Engesser – MAS 22 / 41



Nagel-Schreckenberg Model: Representation

Traffic is modeled as A =< R,Q,N,δ >

Entities of R = {c1,c2, . . .} stand for parts of the lane
Each cell corresponds to a discrete part of the lane (roughly
the space needed by a car)

Q = {0, . . . ,vmax , free}: Each cell is either occupied by one
car with velocity v ≤ vmax , or it is empty.
N(ci) = {ci−vmax , ...,ci+1}
δ is realized by a set of four rules executed by each driver

Nebel, Lindner, Engesser – MAS 23 / 41



Nagel-Schreckenberg Model: Rules

Each car at cell ci with velocity v performs four consecutive
steps:

Acceleration: If v < vmax and gap to next car is larger than
v +1, then increment speed by 1.
Slowing down: If the next car is at cell i + j with j ≤ v, then
reduce speed to j−1.
Randomization: If v > 0, then decrement v by 1 with
probability p.

Car does not accelerate although it could (takes back
Acceleration)
Car reached maximal velocity but slows down again
Overreaction when braking

Car motion: Move forward v cells.

Nebel, Lindner, Engesser – MAS 24 / 41



Nagel-Schreckenberg: Example

2 _ _ 2 _ _ 2 _ _
_ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _

Nebel, Lindner, Engesser – MAS 25 / 41



Nagel-Schreckenberg: Example

2 _ _ 2 _ _ 2 _ _
_ _ 2 _ _ 2 _ _ 2
_ 2 _ _ 2 _ 1 _ _

Nebel, Lindner, Engesser – MAS 26 / 41



Nagel-Schreckenberg: Example

2 _ _ 2 _ _ 2 _ _
_ _ 2 _ _ 2 _ _ 2
_ 2 _ _ 2 _ 1 _ _
_ _ _ 2 0 _ _ _ 2

Nebel, Lindner, Engesser – MAS 27 / 41



Nagel-Schreckenberg: Example

2 _ _ 2 _ _ 2 _ _
_ _ 2 _ _ 2 _ _ 2
_ 2 _ _ 2 _ 1 _ _
_ _ _ 2 0 _ _ _ 2
_ 2 _ 0 _ 1 _ _ _

Nebel, Lindner, Engesser – MAS 28 / 41



Nagel-Schreckenberg: Density and Flow

Assume constant system density: ρ = |Ag||R|
For a fixed cell ci , time-averaged density over time interval
T :

ρ̄
T =

1
T

t0+T

∑
t=t0+1

ni(t)

. . .with ni(t) = 1 if i is occupied, else ni(t) = 0
Time-averaged flow q̄ between i and i +1:

q̄T =
1
T

t0+T

∑
t=t0+1

ni,i+1(t)

. . .with ni,i+1(t) = 1 if some car moved between i and i +1 at
t, else ni,i+1(t) = 0

Nebel, Lindner, Engesser – MAS 29 / 41



Nagel-Schreckenberg: Fundamental Diagram

Fig.: Source: [5]

Nebel, Lindner, Engesser – MAS 30 / 41



Goal-Based Agent

function Goal-Based Agent(percept)
global state,actions,goals
state← Update-State(state,percept)
predictions← Predict(state,actions)
action← Best-Action(predictions,goals)
state← Update-State(state,action)
return action

end function

Practical reasoning more flexible due to explicitly
representing actions and goals instead of rules, i.e., “Will
the world state be consistent with my goals if I execute
action A?”

Nebel, Lindner, Engesser – MAS 31 / 41



Utility-Based Agent

function Utility-Based-Agent(percept)
global state,actions,utilities
state← Update-State(state,percept)
predictions← Predict(state,actions)
action← Best-Action(predictions,utilities)
state← Update-State(state,action)
return action

end function

Practical reasoning more decisive due to the ability to take
utilities into account, i.e., “Is action A the best action among
the available actions?”

Nebel, Lindner, Engesser – MAS 32 / 41



Cognitive Agent: ACT-R

Nebel, Lindner, Engesser – MAS 33 / 41



ACT-R: Activation and Learning

Activation
Entries in the declarative memory are called chunks
Chunks have a degree of activation
Activation of chunks activates associated chunks
Chunks’ activation descreases over time and fall below the
retrieval threshold (forgetting)

Utility Learning
The rules of an ACT-R agent are called productions
Production have utility: Ui = PiG−Ci
Probability of success: P = success/(success+ failures)
Cost equation: C = ∑j effortj/(successes+ failures)
G: Some fixed importance of the current goal
Production choice: Probi = eUi/noise/(∑n

j eUj/noise)

Nebel, Lindner, Engesser – MAS 34 / 41



BDI Agent

function BDI-Agent(percept)
global beliefs,desires, intentions
beliefs← Update-Belief(beliefs,percept)
desires← Options(beliefs, intentions)
intentions← Filter(beliefs, intentions,desires)
action← Means-End-Reasoning(intentions)
beliefs← Update-Belief(action)
return action

end function

BDI agents start out with some beliefs and intentions.
Intentions are goals the agent has actually chosen to bring
about (can be adopted and dropped).
Beliefs and intentions constrain what the agent desires.
Together, B, D, and I determine the agent’s future intentions.

Nebel, Lindner, Engesser – MAS 35 / 41



BDI Frameworks

Just to name a few
Jason: http://jason.sourceforge.net/
3APL: https://en.wikipedia.org/wiki/3APL
2APL: http://apapl.sourceforge.net/
JADEX: http://vsis-www.informatik.uni-hamburg.
de/projects/jadex/
GOAL: https://goalapl.atlassian.net/wiki

Different technologies, e.g., Prolog-style knowledge bases
vs. XML files vs. Java Objects
Different formalizations of BDI, e.g., AgentSpeak, GOAL

Nebel, Lindner, Engesser – MAS 36 / 41

http://jason.sourceforge.net/
https://en.wikipedia.org/wiki/3APL
http://apapl.sourceforge.net/
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
https://goalapl.atlassian.net/wiki


Cognitive Agents in GOAL

GOAL emphasizes programming cognitive agents.
Cognitive agents maintain a cognitive state that consists of
knowledge and goals.

Knowledge: Facts the agent believes are true.
Goals: Facts the agent wants to be true.

Cognitive state is represented in some knowledge
representation (KR) language.
Cognitive agents derive their choice of action from their
knowledge and goals.

Nebel, Lindner, Engesser – MAS 37 / 41



Example: The Vacuum World

Percepts: dirt, orientation (N, S, E, W)
Knowledge: In/2, dirt/0, clean/0. initial KB: In(0, 0), ¬clean
Goal: clean [Note: clean cannot be perceived but must be
inferred!]
Actions: suck, step forward, turn right (90◦)

Nebel, Lindner, Engesser – MAS 38 / 41



Programming language GOAL

Mind-body metaphor:
Agents (mind) are
connected to
controllable entities
(body) living in some
environment.
Agents receive percepts
from the environment
through their controlled
entities.
Agents decide what the
controlled entities will
do.

Fig.: Source [1]

Controlled entities: a bot in Unreal Tournament, a robot, . . .

Nebel, Lindner, Engesser – MAS 39 / 41



GOAL Execution Cycle

Nebel, Lindner, Engesser – MAS 40 / 41



Literature

Hindriks, K. V., Programming Cognitive Agents in GOAL, Technical
Manual, 2017, https://goalapl.atlassian.net/wiki/.

Brachmann, R. J. & Levesque, H. J., Knowledge Representation and
Reasoning, 2004, Morgan Kaufmann Publishers.

Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach, second edition, Prentice Hall, 2003.

U. Wilensky, W. Rand, An Introduction to Agent-Based Modeling, MIT
Press, ISBN: 9780262731898, 2015.
K. Nagel, M. Schreckenberg (1992), A cellular automaton model for
freeway traffic, J. Phys. I France 2, pp. 2221–2229.

Nebel, Lindner, Engesser – MAS 41 / 41


