

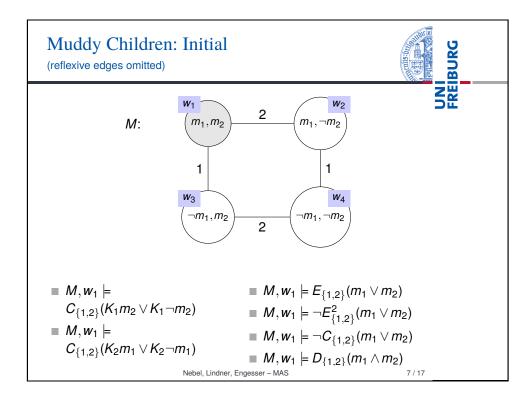
Base Case I

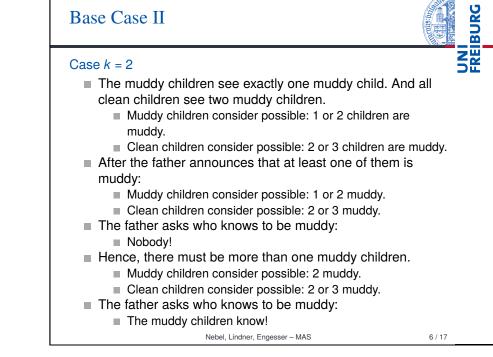
Case k = 1

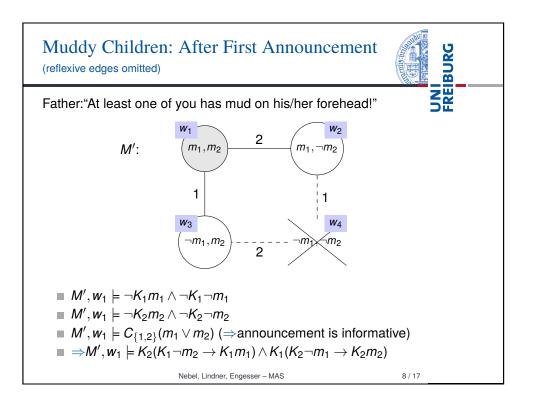
- The muddy child only sees clean children. And all clean children see one muddy child.
 - Muddy child considers possible: 0 or 1 children are muddy.
 - Clean children consider possible: 1 or 2 children are muddy.
- After the father announces that at least one of them is muddy:
 - Muddy child considers possible: 1 muddy.
 - Clean children consider possible: 1 or 2 muddy.
- The father asks who knows to be muddy:
 - Muddy child knows!

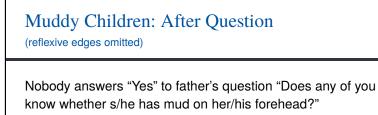
Nebel, Lindner, Engesser - MAS

5/17

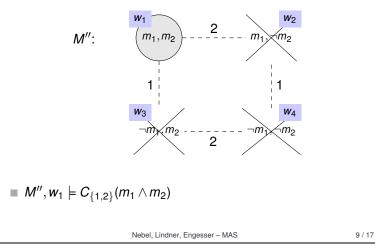


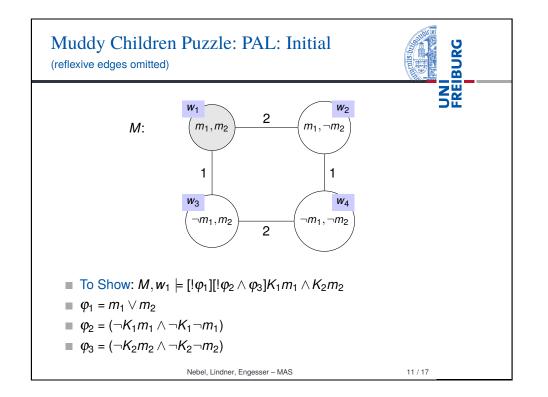






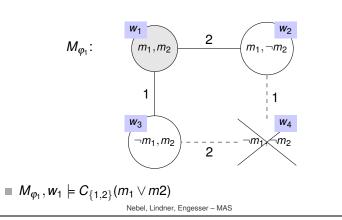
UNI FREIBURG





Public Announcement Operator	BURG
	FRE
$[! \varphi] \psi$: "After φ has been truthfully announced, ψ is the	e case."
Semantics	
$M, w \models [! \varphi] \psi$ iff. $M, w \not\models \varphi$, or else $M_{\varphi}, w \models \psi$	
■ M_{φ} is the relativation of <i>M</i> to the worlds where φ model $M_{\varphi} = (S', R', V')$ is given as follows:	holds. The
$\mathcal{S}' = \{ \pmb{w} \in \mathcal{S} : \mathcal{M}, \pmb{w} \models \pmb{arphi} \}$	(1)
$R' = R _{S' \times S'}$	(2)
$V'(p)=V(p)\cap S'$	(3)
Nebel, Lindner, Engesser – MAS	10 / 17
Muddy Children Puzzle: PAL: After	
Announcement	
(reflexive edges omitted)	
	N N N N N N N N N N N N N N N N N N N

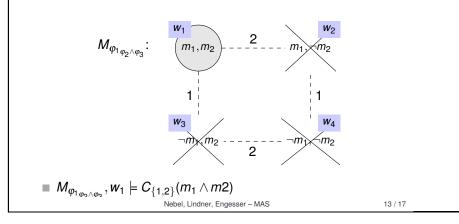
 $M, w_1 \models [!\varphi_1][!\varphi_2 \land \varphi_3]K_1m_1 \land K_2m_2$ iff. $M, w_1 \not\models \varphi_1$ or else $M_{\varphi_1}, w_1 \models [!\varphi_2 \land \varphi_3]K_1m_1 \land K_2m_2$



12/17

Muddy Children Puzzle: PAL: After Question (reflexive edges omitted)

$$\begin{split} M_{\varphi_1}, w_1 &\models [!\varphi_2 \land \varphi_3] K_1 m_1 \land K_2 m_2 \\ \text{iff. } M_{\varphi_1}, w_1 &\not\models \varphi_2 \land \varphi_3 \text{ or else } M_{\varphi_1_{\varphi_2} \land \varphi_3} K_1 m_1 \land K_2 m_2 \end{split}$$



Translation of PAL to Epistemic Logic

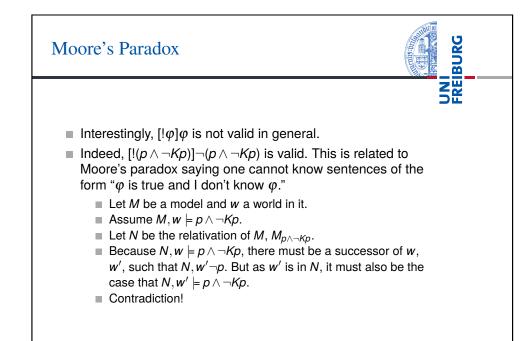
Theorem (cf., [1])

For every formula φ with public announcement operator there is a equivalent formula $t(\varphi)$ without public announcement operator.

- $\blacksquare t(p) = p$
- $\blacksquare t(\neg \phi) = \neg t(\phi)$
- $= t(\varphi \land \psi) = t(\varphi) \land t(\psi)$
- $\blacksquare t(K_i \varphi) = K_i t(\varphi)$
- $\blacksquare t([!\phi]\rho) = t(\phi) \to \rho$
- $\blacksquare t([!\varphi)\neg\psi) = t(\varphi \rightarrow \neg [!\varphi]\psi)$
- $= t([!\varphi](\psi \land \chi)) = t([!\varphi]\psi \land [!\varphi]\chi)$

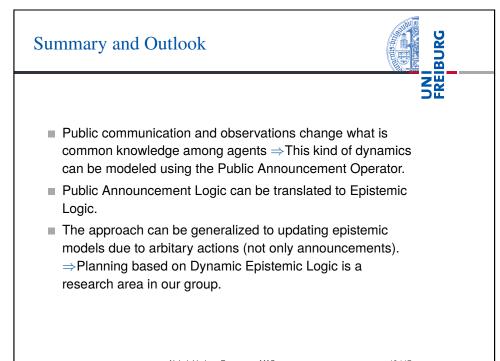
$$t([!\varphi]K_i\psi) = t(\varphi \to K_i[!\varphi]\psi)$$

- $\quad \quad t([!\varphi][!\psi]\chi) = t([!(\varphi \land [!\varphi]\psi)]\chi)$
- \Rightarrow PAL does not introduce something really new. But it makes modeling public announcements easier.



Nebel, Lindner, Engesser - MAS

14/17



UNI FREIBURG

UNI FREIBURG

