Multi-Agent Systems

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser Winter Term 2018/19

Overview

UNI FREIBURG

Recap

- Situations from various domains (Programs, Knowledge, Belief, Desire, Obligation) can nicely be modeled using graphical models.
- Kripke models formalize graphical models.
- By constraining the accessibility relations of Kripke frames we obtain classes that correspond to above concepts (Knowledge, Belief etc.)
- Today
 - Introducing formal languages to talk about Kripke models and thus generally about Knowledge, Belief, Desire, Obligation ...

Modal Logics

UNI FREIBURG

Kripke Frame

Given a countable set of edge labels \mathcal{I} , a Kripke Frame is a tuple (W, R) such that:

- W is a non-empty set of possible worlds, and
- $R: I \to 2^{W \times W}$ maps each $I \in \mathcal{I}$ to a binary relation R(I) on W (called the accessibility relation of I).

Kripke Model

- M = (W, R, V) is a Kripke Model where:
 - \blacksquare (*W*,*R*) is a Kripke frame, and
 - $V : \mathcal{P} \to 2^W$ is called the valuation of a set of node labels \mathcal{P} .

The language ${\mathcal F}$ of modal logic is inductively defined as follows:

- $\blacksquare \mathcal{P} \subseteq \mathcal{F}.$
- $\blacksquare \ \{\top, \bot\} \subseteq \mathcal{F}.$
- If $\varphi \in \mathcal{F}$, then $\neg \varphi \in \mathcal{F}$.
- $\blacksquare \ \text{ If } \phi, \psi \in \mathcal{F} \text{ then } (\phi \wedge \psi), (\phi \lor \psi), (\phi \to \psi), (\phi \leftrightarrow \psi) \in \mathcal{F}$

If $\varphi \in \mathcal{F}$ and $I \in \mathcal{I}$, then **[I]** φ , <**I**> $\varphi \in \mathcal{F}$.

Different Variants of Languages

- Alethic logic (Necessity): □, ◇
- Epistemic logic (Knowledge): K, K
- Doxastic logic (Belief): B, Â
- Deontic logic (Obligation): O, P
- Multi-Agent Epistemic logic: Agent name as subscript, e.g., K_{mary} K̂_{john}sun_shining
- Notation: Sometimes, we will decide that [I] shall be read in context of epistemic logic, sometimes we will decide to read it in context of deontic logic. We then may also sometimes write K₁ (i.e., Agent I knows), and O₁ (i.e., Agent I ought to) instead of [I].

UNI FREIBURG

Given a Kripke model *M*, a possible world *w* of *M*, and a formula φ . We define when φ is true at *w*, written $M, w \models \varphi$:

- $M, w \models p$ iff. $w \in V(p)$, for atomic formulae $p \in \mathcal{P}$.
- $\blacksquare M, w \not\models \bot.$
- $\blacksquare M, w \models \top.$

$$\blacksquare M, w \models \neg \varphi \text{ iff. } M, w \not\models \varphi.$$

- $\blacksquare M, w \models (\phi \land \psi) \text{ iff. } M, w \models \phi \text{ and } M, w \models \psi.$
- $\blacksquare M, w \models (\phi \lor \psi) \text{ iff. } M, w \models \phi \text{ or } M, w \models \psi.$
- $\blacksquare M, w \models (\phi \rightarrow \psi) \text{ iff. } M, w \not\models \phi \text{ or } M, w \models \psi.$
- $\blacksquare M, w \models (\varphi \leftrightarrow \psi) \text{ iff. } M, w \models (\varphi \rightarrow \psi) \text{ and } M, w \models (\psi \rightarrow \varphi).$
- $M, w \models [I] \varphi$ iff. for every u: if $(w, u) \in R(I)$ then $M, u \models \varphi$.
- $\blacksquare M, w \models \langle \mathbf{I} \rangle \varphi \text{ iff. for some } u: (w, u) \in R(I) \text{ and } M, u \models \varphi.$

Duality

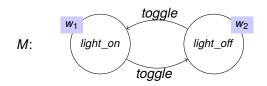
- $\blacksquare M, w \models [I] \varphi \text{ iff. } M, w \models \neg \langle I \rangle \neg \varphi$
- $\blacksquare M, w \models \langle \mathbf{I} \rangle \varphi \text{ iff. } M, w \models \neg [\mathbf{I}] \neg \varphi$

■ To see that (1):

- $\blacksquare M, w \models [I] \varphi$
- iff. for every *u*: if $(w, u) \in R(I)$ then $M, u \models \varphi$
- iff. it is not the case that for some u: $(w, u) \in R(I)$ and $M, u \models \neg \varphi$
- iff. not $M, w \models \langle I \rangle \neg \phi$
- iff. $M, w \models \neg \langle I \rangle \neg \phi$

- Question: Is a given formula φ true in world w in model M?
- Input: A Kripke model M, a world w in M, and a formula φ .
- **Output:** "Yes" if $M, w \models \phi$, "No" else.

Model Checking: Example



$$\blacksquare M, w_1 \models < toggle > \top \land [toggle][toggle]light_on$$

1 $M, w_1 \models < toggle > \top$

1.1 for some u: $(w_1, u) \in R(toggle)$ and $M, u \models \top$.

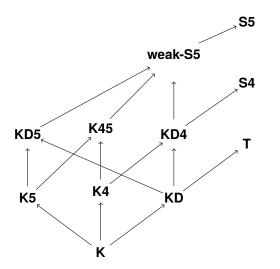
- 1.1.1 we find $(w_1, w_2) \in R(toggle)$ and $M, w_2 \models \top . \odot$
 - 2 $M, w_1 \models [toggle][toggle]light_on$
 - 2.1 for every *u*: if $(w_1, u) \in R(toggle)$ then $M, u \models [toggle]light_on$
- 2.1.1 $M, w_2 \models [toggle]light_on.$
- 2.1.1.1 for every *u*: if $(w_2, u) \in R(toggle)$ then $M, u \models light_on$
- 2.1.1.1.1 $M, w_1 \models light_on. \odot$

Semantics: Satisfiability

- A formula φ is satisfiable in a model M = (W, R, V), if there exists a world $w \in W$ such that $M, w \models \varphi$.
- A formula φ is satisfiable in a frame if it is satisfiable in a model based on that frame.
- A formula φ is satisfiable in a class of frames if it is satisfiable in a model based on some frame from the class of frames.
- A formula φ is true in a model M ($M \models \varphi$) if φ is true in all worlds of M.

- A formula is valid in a frame if φ is true in all models based on that frame.
- We say that a formula φ is valid in a class of frames **C** (**K**, **T**, **D**, **4**, **5**, and combinations thereof), written $\models_{\mathbf{C}} \varphi$, iff. $(W, R, V), w \models \varphi$
 - for every frame (W, R),
 - every valuation V over (W, R),
 - every world *w* in *W*.

A Lattice of Classes



Validity in a Class of Frames

- Valid formulas give us an idea of how the classes differ, and thus what is and is not specific to the general behavior of our modalities (Knowledge, Belief, Obligation etc.).
- Correspondences between classes of frames and formulas
 - **[I]** $(\phi \rightarrow \psi) \rightarrow ([I]\phi \rightarrow [I]\psi)$ (for every formulae ϕ, ψ) is **K**-valid (valid in the class of all frames)
 - **[I]** $\phi \rightarrow \phi$ (for every formulae ϕ) is **T**-valid (exactly valid in the class of reflexive frames)
 - **[I]** $\phi \rightarrow \langle I \rangle \phi$ (for every formulae ϕ) is **D**-valid (exactly valid in the class of serial frames)
 - **[I]** $\phi \rightarrow$ **[I][I]** ϕ (for every formulae ϕ) is 4-valid (exactly valid in the class of transitive frames)
 - $\langle \mathbf{I} \rangle \phi \rightarrow [\mathbf{I}] \langle \mathbf{I} \rangle \phi$ (for every formulae ϕ) is 5-valid (exactly valid in the class of Euclidean frames)

BURG

ZW

Validity in a Class of Frames: Example I

- **[I]** $(\phi \rightarrow \psi) \rightarrow ([I]\phi \rightarrow [I]\psi)$ is K-valid:
 - 1 Let *M* be a arbitrarily chosen Kripke model and *w* be a arbitrary world in *M*.
 - 1.1 Assume $M, w \models [I](\phi \rightarrow \psi)$ (otherwise the formula is true anyway \odot). Thus, for every world u: if $(w, u) \in R(I)$ then $M, u \models \phi \rightarrow \psi$.
 - 1.1.1 If $[\mathbf{I}]\varphi$ is false in w, then $([\mathbf{I}]\varphi \rightarrow [\mathbf{I}]\psi)$ is true in w, and the overall formula is true in w. \odot
 - 1.1.2 If **[I]** φ is true in *w*, then both **[I]** $\varphi \rightarrow \psi$ and **[I]** (φ) are true in *w*. Thus, in every world *u* accessible from *w*, also ψ is true, i.e., **[I]** (ψ) is true in *w*. Therefore, the overall formula is true in *w*. \bigcirc

Validity in a Class of Frames: Example II

- **[I]** $\phi \rightarrow \phi$ is not **K**-valid:
 - Consider Kripke model M = (W, R, V) from class **K**:

Check that $M, w \models [I]p$ and $M, w \not\models p$. Thus, $M, w \not\models [I]p \rightarrow p$.

REIBURG

A formula φ entails ψ in the class C (written φ ⊨_C ψ) iff for every model M based on some frame in C and every possible world w of M:

if $M, w \models_{\mathbf{C}} \varphi$ then $M, w \models_{\mathbf{C}} \psi$

Entailment can be reduced to validity:

$$\begin{array}{c|c} \varphi \models_{\mathbf{C}} \psi \text{ iff. } \models_{\mathbf{C}} \phi \rightarrow \psi \\ \Theta \models_{\mathbf{C}} \psi \text{ iff. } \models_{\mathbf{C}} \land \Theta \rightarrow \psi \end{array}$$

Reducing Validity to Satisfiability

- The validity problem can be reduced to the satisfiability problem:
 - Instead of asking whether φ is true in all worlds in all Kripke models in a class, we can ask if ¬φ is true in some world in some Kripke model in the class.
- Problem formulation:
 - Input: A formula φ .
 - Output: "Yes" if there is a Kripke model *M* and a world *w* of *M* such that $M, w \models \varphi$, "No" otherwise.
- It turns out that we can systematically search for Kripke models that satisfy some formula. With this tool at hand, we can algorithmically decide validity.

Literature I

- M. Wooldridge, An Introduction to MultiAgent Systems, John Wiley & Sons, 2002.
- O. Gasquet, A. Herzig, B. Said, F. Schwarzentruber, Kripke's Worlds An Introduction to Modal Logics via Tableaux, Springer, ISBN 978-3-7643-8503-3, 2014.