Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser Winter Term 2018/19

Recap

- Situations from various domains (Programs, Knowledge, Belief, Desire, Obligation) can nicely be modeled using graphical models.
- Kripke models formalize graphical models.
- By constraining the accessibility relations of Kripke frames we obtain classes that correspond to above concepts (Knowledge, Belief etc.)

Today

Introducing formal languages to talk about Kripke models and thus generally about Knowledge, Belief, Desire, Obligation ...

Modal Logics

Kripke Frame

Given a countable set of edge labels \mathcal{I} , a Kripke Frame is a tuple (W,R) such that:

- W is a non-empty set of possible worlds, and
- $R: I \to 2^{W \times W}$ maps each $I \in \mathcal{I}$ to a binary relation R(I) on W (called the accessibility relation of I).

Kripke Model

M = (W, R, V) is a Kripke Model where:

- \blacksquare (*W*,*R*) is a Kripke frame, and
- $V: \mathcal{P} \to 2^W$ is called the valuation of a set of node labels \mathcal{P} .

The language ${\cal F}$ of modal logic is inductively defined as follows:

- $\mathbb{P} \subseteq \mathcal{F}$.
- $\blacksquare \{\top, \bot\} \subseteq \mathcal{F}.$
- $\blacksquare \ \ \text{If} \ \phi \in \mathcal{F} \text{, then } \neg \phi \in \mathcal{F}.$
- If $\phi, \psi \in \mathcal{F}$ then $(\phi \land \psi), (\phi \lor \psi), (\phi \to \psi), (\phi \leftrightarrow \psi) \in \mathcal{F}$
- $\blacksquare \ \text{ If } \varphi \in \mathcal{F} \text{ and } I \in \mathcal{I} \text{, then } \textbf{[I]} \varphi, \langle \textbf{I} \rangle \varphi \in \mathcal{F}.$

Different Variants of Languages

UNI FREIBUR

- \blacksquare Alethic logic (Necessity): \Box, \diamondsuit
- Epistemic logic (Knowledge): **K**, **K**
- Doxastic logic (Belief): **B**, **B**
- Deontic logic (Obligation): **O**, **P**
- Multi-Agent Epistemic logic: Agent name as subscript, e.g., K_{marv} K̂_{iohn}sun_shining
- Notation: Sometimes, we will decide that [I] shall be read in context of epistemic logic, sometimes we will decide to read it in context of deontic logic. We then may also sometimes write *K*_I (i.e., Agent I knows), and *O*_I (i.e., Agent I ought to) instead of [I].

Semantics: Truth Conditions

UNI FREIBUR

Given a Kripke model M, a possible world w of M, and a formula φ . We define when φ is true at w, written $M, w \models \varphi$:

- $M, w \models p$ iff. $w \in V(p)$, for atomic formulae $p \in P$.
- \blacksquare $M, w \not\models \bot$.
- $\blacksquare M, w \models \top.$
- \blacksquare $M, w \models \neg \varphi$ iff. $M, w \not\models \varphi$.
- \blacksquare $M, w \models (\phi \land \psi)$ iff. $M, w \models \phi$ and $M, w \models \psi$.
- \blacksquare $M, w \models (\phi \lor \psi)$ iff. $M, w \models \phi$ or $M, w \models \psi$.
- $\blacksquare M, w \models (\phi \rightarrow \psi) \text{ iff. } M, w \not\models \phi \text{ or } M, w \models \psi.$
- \blacksquare $M, w \models (\phi \leftrightarrow \psi)$ iff. $M, w \models (\phi \rightarrow \psi)$ and $M, w \models (\psi \rightarrow \phi)$.
- $M, w \models [I] \varphi$ iff. for every u: if $(w, u) \in R(I)$ then $M, u \models \varphi$.
- $M, w \models \langle I \rangle \varphi$ iff. for some $u: (w, u) \in R(I)$ and $M, u \models \varphi$.

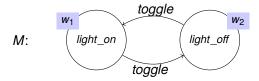
Duality

UNI FREIB

- $M, w \models [I] \varphi \text{ iff. } M, w \models \neg \langle I \rangle \neg \varphi$
- \square $M, w \models \langle \mathbf{I} \rangle \varphi$ iff. $M, w \models \neg [\mathbf{I}] \neg \varphi$
- To see that (1):
 - $M, w \models [1]\varphi$
 - iff. for every u: if $(w,u) \in R(I)$ then $M,u \models \varphi$
 - iff. it is not the case that for some u: $(w,u) \in R(I)$ and $M,u \models \neg \varphi$
 - iff. not $M, w \models \langle \mathbf{I} \rangle \neg \varphi$
 - iff. $M, w \models \neg \langle \mathbf{I} \rangle \neg \varphi$

- **Question:** Is a given formula φ true in world w in model M?
- Input: A Kripke model M, a world w in M, and a formula φ .
- Output: "Yes" if $M, w \models \varphi$, "No" else.

Model Checking: Example

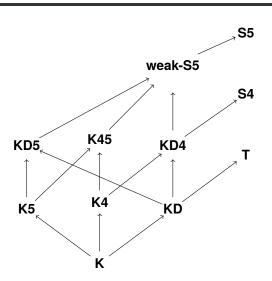


- $M, w_1 \models < toggle > \top \land [toggle][toggle]light_on$
 - 1 $M, w_1 \models < toggle > \top$
 - 1.1 for some $u: (w_1, u) \in R(toggle)$ and $M, u \models \top$.
 - 1.1.1 we find $(w_1, w_2) \in R(toggle)$ and $M, w_2 \models \top . \odot$
 - 2 $M, w_1 \models [toggle][toggle]light on$
 - 2.1 for every u: if $(w_1, u) \in R(toggle)$ then $M, u \models [toggle]light on$
 - 2.1.1 $M, w_2 \models [toggle]light_on$.
- 2.1.1.1 for every u: if $(w_2, u) \in R(toggle)$ then $M, u \models light_on$
- 2.1.1.1.1 *M*, w_1 |= *light on*. ⊕

- A formula φ is satisfiable in a model M = (W, R, V), if there exists a world $w \in W$ such that $M, w \models \varphi$.
- A formula φ is satisfiable in a frame if it is satisfiable in a model based on that frame.
- A formula φ is satisfiable in a class of frames if it is satisfiable in a model based on some frame from the class of frames.
- A formula φ is true in a model M ($M \models \varphi$) if φ is true in all worlds of M.

- \blacksquare A formula is valid in a frame if φ is true in all models based on that frame.
- We say that a formula φ is valid in a class of frames **C** (**K**, **T**, **D**, **4**, **5**, and combinations thereof), written $\models_{\mathbf{C}} \varphi$, iff. $(W, R, V), w \models \varphi$
 - \blacksquare for every frame (W, R),
 - \blacksquare every valuation V over (W,R),
 - every world w in W.

A Lattice of Classes



- Valid formulas give us an idea of how the classes differ, and thus what is and is not specific to the general behavior of our modalities (Knowledge, Belief, Obligation etc.).
- Correspondences between classes of frames and formulas
 - $[I](\varphi \to \psi) \to ([I]\varphi \to [I]\psi)$ (for every formulae φ, ψ) is **K**-valid (valid in the class of all frames)
 - [I] $\phi \rightarrow \phi$ (for every formulae ϕ) is **T**-valid (exactly valid in the class of reflexive frames)
 - [I] $\phi \rightarrow \langle I \rangle \phi$ (for every formulae ϕ) is **D**-valid (exactly valid in the class of serial frames)
 - [I] $\phi \rightarrow$ [I][I] ϕ (for every formulae ϕ) is **4**-valid (exactly valid in the class of transitive frames)
 - $\langle I \rangle \varphi \rightarrow [I] \langle I \rangle \varphi$ (for every formulae φ) is 5-valid (exactly valid in the class of Euclidean frames)

Validity in a Class of Frames: Example I

UNI FREIBU

- $[I](\phi \rightarrow \psi) \rightarrow ([I]\phi \rightarrow [I]\psi)$ is K-valid:
 - 1 Let *M* be a arbitrarily chosen Kripke model and *w* be a arbitrary world in *M*.
 - 1.1 Assume $M, w \models [\mathbf{I}](\varphi \to \psi)$ (otherwise the formula is true anyway \odot). Thus, for every world u: if $(w, u) \in R(I)$ then $M, u \models \varphi \to \psi$.
 - 1.1.1 If $[\mathbf{I}]\varphi$ is false in w, then $([\mathbf{I}]\varphi \to [\mathbf{I}]\psi)$ is true in w, and the overall formula is true in w. \odot
 - 1.1.2 If $[\mathbf{I}]\varphi$ is true in w, then both $[\mathbf{I}]\varphi \to \psi$ and $[\mathbf{I}](\varphi)$ are true in w. Thus, in every world u accessible from w, also ψ is true, i.e., $[\mathbf{I}](\psi)$ is true in w. Therefore, the overall formula is true in w. \odot

UNI FREIB

- \blacksquare **[I]** $\phi \rightarrow \phi$ is not **K**-valid:
 - Consider Kripke model M = (W, R, V) from class **K**:
 - \blacksquare $W = \{w\}$
 - \blacksquare $R(I) = \{\}$
 - $V(p) = \{\}$
 - Check that $M, w \models [I]p$ and $M, w \not\models p$. Thus, $M, w \not\models [I]p \rightarrow p$.

- A formula φ entails ψ in the class \mathbf{C} (written $\varphi \models_{\mathbf{C}} \psi$) iff for every model M based on some frame in \mathbf{C} and every possible world w of M:
 - \blacksquare if $M, w \models_{\mathbf{C}} \varphi$ then $M, w \models_{\mathbf{C}} \psi$
- Entailment can be reduced to validity:
 - $\blacksquare \varphi \models_{\mathbf{C}} \psi \text{ iff. } \models_{\mathbf{C}} \varphi \rightarrow \psi$
 - lacksquare $\Theta \models_{\mathbf{C}} \psi$ iff. $\models_{\mathbf{C}} \land \Theta \rightarrow \psi$

- UNI FREIBU
- The validity problem can be reduced to the satisfiability problem:
 - Instead of asking whether φ is true in all worlds in all Kripke models in a class, we can ask if $\neg \varphi$ is true in some world in some Kripke model in the class.
- Problem formulation:
 - Input: A formula φ .
 - Output: "Yes" if there is a Kripke model M and a world w of M such that $M, w \models \varphi$, "No" otherwise.
- It turns out that we can systematically search for Kripke models that satisfy some formula. With this tool at hand, we can algorithmically decide validity.

Literature I

UNI

M. Wooldridge, An Introduction to MultiAgent Systems, John Wiley & Sons, 2002.

O. Gasquet, A. Herzig, B. Said, F. Schwarzentruber, Kripke's Worlds — An Introduction to Modal Logics via Tableaux, Springer, ISBN 978-3-7643-8503-3, 2014.