Multi-Agent Systems Propositional Logic

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser April 17, 2018

The logical approach

Define a formal language: logical & non-logical symbols, syntax rules Propositional Logic

Syntax

Semantics

The logical approach

- Define a formal language: logical & non-logical symbols, syntax rules
- Provide language with compositional semantics:
 - Fix universe of discourse
 - Specify how the non-logical symbols can be interpreted: interpretation
 - Rules how to combine interpretation of single symbols
 - Satisfying interpretation = model
 - Semantics often entails concept of logical implication / entailment

Propositional Logic

Syntax

Semantics

The logical approach

- Define a formal language: logical & non-logical symbols, syntax rules
- Provide language with compositional semantics:
 - Fix universe of discourse
 - Specify how the non-logical symbols can be interpreted: interpretation
 - Rules how to combine interpretation of single symbols
 - Satisfying interpretation = model
 - Semantics often entails concept of logical implication / entailment
- Specify a calculus that allows to derive new formulae from old ones according to the entailment relation

Propositional Logic

Syntax

Semantics

Motivation: Deductive Agent


```
1: function action in (\Delta \in D) out (\alpha \in Ac)

2: for all \alpha \in Ac do

3: if \Delta \vdash_{\rho} Do(\alpha) then

4: return \alpha

5: end if

6: end for

7: for all \alpha \in Ac do

8: if \Delta \nvdash_{\rho} \neg Do(\alpha) then

9: return \alpha
```

Propositional Logic

Syntax

Semantics

- -

Terminology

- Δ: Set of formulae written in some logic.
- \vdash : Relation that holds between Δ s and formulae that can be derived from Δ .

10:

end if

11: end for 12: return null

Propositional Logic

Syntax

Semantics

Terminology

Propositional Logic

Propositional logic: main ideas

- Non-logical symbols: propositional variables or atoms
 - representing propositions which cannot be decomposed
 - which can be true or false (for example: "Snow is white", "It rains")

Propositional Logic

Зуппах

Semantics

Propositional logic: main ideas

- Propositional Logic
 - Syntax
 - Semantics
 - Terminology

- Non-logical symbols: propositional variables or atoms
 - representing propositions which cannot be decomposed
 - which can be true or false (for example: "Snow is white", "It rains")
- Logical symbols: propositional connectives such as: and (\(\lambda\), or (\(\nabla\), and not (\(\nabla\))

- Non-logical symbols: propositional variables or atoms
 - representing propositions which cannot be decomposed
 - which can be true or false (for example: "Snow is white", "It rains")
- Logical symbols: propositional connectives such as: and (\(\lambda\), or (\(\nabla\)), and not (\(\nabla\))
- Formulae: built out of atoms and connectives
- Universe of discourse: truth values

Propositional Logic

Syntax

Semantics

Terminology

Syntax

Syntax

Countable alphabet Σ of propositional variables: a,b,c,...Propositional formulae are built according to the following rule:

Propositional Logic

Syntax

Semantics

Syntax

Countable alphabet Σ of propositional variables: a,b,c,...Propositional formulae are built according to the following rule:

Parentheses can be omitted if no ambiguity arises.

Operator precedence:
$$\neg > \land > \lor > \rightarrow = \leftrightarrow$$
.

Propositional Logic

Syntax

Semantics

- ($a \lor b$) is an expression of the language of propositional logic.
- $\phi ::= a|\dots|(\phi' \leftrightarrow \phi'')$ is a statement about how expressions in the language of propositional logic can be formed. It is stated using meta-language.
- In order to describe how expressions (in this case formulae) can be formed, we use meta-language.
- When we describe how to interpret formulae, we use meta-language expressions.

Propositional Logic

Syntax

Semantics Terminology

Semantics

- Atomic propositions can be true (1, T) or false (0, F).
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- Example:

$$(a \lor b) \land c$$

is true iff c is true and, additionally, a or b is true.

Propositional Logic

Syntax

Semantics

- Atomic propositions can be true (1, T) or false (0, F).
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- Example:

$$(a \lor b) \land c$$

is true iff c is true and, additionally, a or b is true.

Logical implication can then be defined as follows:

 ϕ is implied by a set of formulae Θ iff ϕ is true for all truth assignments (world states) that make all formulae in Θ true.

Propositional Logic

Syntax

Semantics

Formal semantics

An interpretation (or truth assignment) over $\boldsymbol{\Sigma}$ is a function:

$$\mathcal{I}\colon \Sigma \to \{T,F\}.$$

Propositional Logic

Semantics

Formal semantics

An interpretation (or truth assignment) over Σ is a function:

$$\mathcal{I} \colon \Sigma \to \{T, F\}.$$

A formula ψ is true under \mathcal{I} or is satisfied by \mathcal{I} (symb. $\mathcal{I} \models \psi$):

Propositional Logic

Syntax

Semantics

Given

$$\mathcal{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,$$

Is
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$
 true or false?

Propositional Logic

Symax

Semantics

Given

$$\mathcal{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,$$

Is
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$
 true or false?

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

Propositional Logic

-,.....

Semantics

Given

$$\mathcal{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,$$

Is
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$
 true or false?

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

Propositional Logic

Cyntax

Semantics

II EIBURG

FREB FREB

Given

$$\mathcal{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,$$

Is
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$
 true or false?

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

Propositional Logic

- -

Semantics

FIRING

Z Z Z

Given

$$\mathcal{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,$$

Is
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$
 true or false?

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

Propositional Logic

Semantics

II EIBURG

NE NE

Given

$$\mathcal{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,$$

Is
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$
 true or false?

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

Propositional Logic

Syntax

Semantics

Propositional Logic

Semantics

Terminology

Terminology

An interpretation \mathcal{I} is a model of φ iff $\mathcal{I} \models \varphi$. A formula φ is

- satisfiable if there is an \mathcal{I} such that $\mathcal{I} \models \varphi$;
- unsatisfiable, otherwise; and
- valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} (or tautology);
- falsifiable, otherwise.

Propositional Logic

Symax

Semantics

Terminology

An interpretation \mathcal{I} is a model of φ iff $\mathcal{I} \models \varphi$. A formula φ is

- **satisfiable** if there is an \mathcal{I} such that $\mathcal{I} \models \varphi$;
- unsatisfiable, otherwise; and
- valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} (or tautology);
- falsifiable, otherwise.

Formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathcal{I} ,

$$\mathcal{I} \models \varphi \text{ iff } \mathcal{I} \models \psi.$$

Propositional Logic

Gymax

Semantics

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

Propositional Logic

Semantics

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

$$\sim$$
 satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$

Propositional Logic

Semantics

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

- \rightarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$
- \rightarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

Propositional Logic

Symax

Semantics

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

$$\rightarrow$$
 satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$

$$\sim$$
 falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

$$((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$$

Propositional Logic

Semantics

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

$$\sim$$
 satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$

$$\sim$$
 falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

$$((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$$

$$\rightsquigarrow$$
 satisfiable: $a \mapsto T, b \mapsto T$

Propositional Logic

- -

Semantics

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

- \sim satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$
- \rightarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

$$((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$$

- \rightarrow satisfiable: $a \mapsto T, b \mapsto T$
- valid: Consider all interpretations or argue about falsifying ones.

Propositional Logic

- ,

Semantics

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

- \rightarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$
- \rightarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

$$((\neg a \to \neg b) \to (b \to a))$$

- \rightarrow satisfiable: $a \mapsto T, b \mapsto T$
- valid: Consider all interpretations or argue about falsifying ones.

Equivalence?
$$\neg (a \lor b) \equiv \neg a \land \neg b$$

Propositional Logic

-,.....

Semantics

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

- \sim satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, ...$
- \rightarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

$$((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$$

- \rightarrow satisfiable: $a \mapsto T, b \mapsto T$
- valid: Consider all interpretations or argue about falsifying ones.

Equivalence?
$$\neg (a \lor b) \equiv \neg a \land \neg b$$

→ Of course, equivalent (de Morgan).

Propositional Logic

Semantics

Some obvious consequences

Proposition

 φ is valid iff $\neg \varphi$ is unsatisfiable. φ is satisfiable iff $\neg \varphi$ is falsifiable.

Propositional Logic

Semantics

Some obvious consequences

Proposition

 ϕ is valid iff $\neg \phi$ is unsatisfiable.

 φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposition

 $\phi \equiv \psi$ iff $\phi \leftrightarrow \psi$ is valid.

Propositional Logic

Semantics

tional Logic

Semantics

Terminology

Proposition

- φ is valid iff $\neg \varphi$ is unsatisfiable.
- φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposition

 $\phi \equiv \psi$ iff $\phi \leftrightarrow \psi$ is valid.

Theorem

If $\varphi \equiv \psi$, and χ' results from substituting φ by ψ in χ , then $\chi' \equiv \chi$.

Some equivalences

simplifications	$\phi ightarrow \psi$	\equiv	$\neg \phi \lor \psi$	$\phi \leftrightarrow \psi$	\equiv	$(\varphi ightarrow \psi) \wedge$
						$(\psi o \varphi)$
idempotency	$oldsymbol{arphi}ee oldsymbol{arphi}$	\equiv	φ	$oldsymbol{arphi}\wedgeoldsymbol{arphi}$	\equiv	φ
commutativity	$\varphi \lor \psi$	\equiv	$\psi \lor \varphi$	$\varphi \wedge \psi$	\equiv	$\psi \wedge \varphi$
associativity	$(\varphi \lor \psi) \lor \chi$	\equiv	$\varphi \lor (\psi \lor \chi)$	$(\varphi \wedge \psi) \wedge \chi$	=	$\varphi \wedge (\psi \wedge \chi)$
absorption	$\varphi \lor (\varphi \land \psi)$	\equiv	φ	$\varphi \wedge (\varphi \vee \psi)$	\equiv	φ
distributivity	$\varphi \wedge (\psi \vee \chi)$	\equiv	$(\varphi \wedge \psi) \vee$	$\varphi \lor (\psi \land \chi)$	\equiv	$(\varphi \lor \psi) \land$
			$(\varphi \wedge \chi)$			$(\varphi \lor \chi)$
double negation	$ eg \neg \varphi$	\equiv	φ			
constants	$\neg \top$	\equiv	\perp	$\neg \bot$	\equiv	Τ
De Morgan	$\neg(\varphi \lor \psi)$	\equiv	$\neg \phi \wedge \neg \psi$	$\neg(\phi \wedge \psi)$	\equiv	$\neg \varphi \lor \neg \psi$
truth	$oldsymbol{arphi}ee o$	\equiv	Τ	$oldsymbol{arphi}\wedge op$	\equiv	φ
falsity	$oldsymbol{arphi}eeoldsymbol{\perp}$	\equiv	φ	$oldsymbol{arphi} \wedge oldsymbol{\perp}$	\equiv	\perp
taut./contrad.	$\varphi \lor \neg \varphi$	\equiv	T	$\phi \wedge \neg \phi$	\equiv	\perp

Propositional Logic

Syntax

Semantics

...for a given finite alphabet Σ ?

Propositional Logic

Syntax

Semantics

- ...for a given finite alphabet Σ ?
 - Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$

Propositional Logic

Syntax

Semantics

- ...for a given finite alphabet Σ ?
 - Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$
 - How many different logically distinguishable (not equivalent) formulae?

Propositional Logic

Semantics

- ...for a given finite alphabet Σ ?
 - Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$
 - How many different logically distinguishable (not equivalent) formulae?
 - A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).

Propositional Logic

Semantics

- ...for a given finite alphabet Σ ?
 - Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$
 - How many different logically distinguishable (not equivalent) formulae?
 - A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
 - For Σ with $n = |\Sigma|$, there are 2^n different interpretations.

tional Logic

Semantics

Comanico

- ...for a given finite alphabet Σ ?
 - Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$
 - How many different logically distinguishable (not equivalent) formulae?
 - A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
 - For Σ with $n = |\Sigma|$, there are 2^n different interpretations.
 - There are $2^{(2^n)}$ different sets of interpretations.

tional Logic

1

Semantics

- ...for a given finite alphabet Σ ?
 - Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$
 - How many different logically distinguishable (not equivalent) formulae?
 - A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
 - For Σ with $n = |\Sigma|$, there are 2^n different interpretations.
 - There are $2^{(2^n)}$ different sets of interpretations.
 - There are 2^(2ⁿ) (logical) equivalence classes of formulae.

Propositional Logic

Semantics

Extension of the relation \models to sets Θ of formulae:

$$\mathcal{I} \models \Theta \text{ iff } \mathcal{I} \models \varphi \text{ for all } \varphi \in \Theta.$$

Propositional Logic

Syntax

Semantics

Extension of the relation \models to sets Θ of formulae:

$$\mathcal{I} \models \Theta \text{ iff } \mathcal{I} \models \varphi \text{ for all } \varphi \in \Theta.$$

 ϕ is logically implied by Θ (symbolically $\Theta \models \phi$) iff ϕ is true in all models of Θ :

$$\Theta \models \varphi$$
 iff $\mathcal{I} \models \varphi$ for all \mathcal{I} such that $\mathcal{I} \models \Theta$

Propositional Logic

Semantics

■ Extension of the relation \models to sets Θ of formulae:

$$\mathcal{I} \models \Theta \text{ iff } \mathcal{I} \models \varphi \text{ for all } \varphi \in \Theta.$$

 ϕ is logically implied by Θ (symbolically $\Theta \models \phi$) iff ϕ is true in all models of Θ :

$$\Theta \models \varphi$$
 iff $\mathcal{I} \models \varphi$ for all \mathcal{I} such that $\mathcal{I} \models \Theta$

Some consequences:

■ Deduction theorem: $\Theta \cup \{\phi\} \models \psi$ iff $\Theta \models \phi \rightarrow \psi$

Propositional Logic

Semantics

Extension of the relation \models to sets Θ of formulae:

$$\mathcal{I} \models \Theta \text{ iff } \mathcal{I} \models \varphi \text{ for all } \varphi \in \Theta.$$

 ϕ is logically implied by Θ (symbolically $\Theta \models \phi$) iff ϕ is true in all models of Θ :

$$\Theta \models \varphi$$
 iff $\mathcal{I} \models \varphi$ for all \mathcal{I} such that $\mathcal{I} \models \Theta$

Some consequences:

- Deduction theorem: $\Theta \cup \{\phi\} \models \psi \text{ iff } \Theta \models \phi \rightarrow \psi$
- Contraposition: $\Theta \cup \{\phi\} \models \neg \psi$ iff $\Theta \cup \{\psi\} \models \neg \phi$

Propositional Logic

-

Semantics

Extension of the relation \models to sets Θ of formulae:

$$\mathcal{I} \models \Theta \text{ iff } \mathcal{I} \models \varphi \text{ for all } \varphi \in \Theta.$$

 ϕ is logically implied by Θ (symbolically $\Theta \models \phi$) iff ϕ is true in all models of Θ :

$$\Theta \models \varphi$$
 iff $\mathcal{I} \models \varphi$ for all \mathcal{I} such that $\mathcal{I} \models \Theta$

Some consequences:

- Deduction theorem: $\Theta \cup \{\phi\} \models \psi$ iff $\Theta \models \phi \rightarrow \psi$
- Contraposition: $\Theta \cup \{\varphi\} \models \neg \psi$ iff $\Theta \cup \{\psi\} \models \neg \varphi$
- Contradiction: $\Theta \cup \{\phi\}$ is unsatisfiable iff $\Theta \models \neg \phi$

Propositional Logic

- ,

Semantics

Deciding entailment

■ We want to decide $\Theta \models \varphi$.

Propositional Logic

Cymax

Semantics

Deciding entailment

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$\Theta \models \varphi \; \text{iff} \; \bigwedge \Theta \rightarrow \varphi \, \text{is valid}.$$

■ Now negate and test for unsatisfiability using DPLL.

Propositional Logic

Semantics

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$\Theta \models \varphi \; \text{iff} \; \bigwedge \Theta \rightarrow \varphi \, \text{is valid}.$$

- Now negate and test for unsatisfiability using DPLL.
- Different approach: Try to derive φ from Θ find a proof of φ from Θ .

■ Use deduction theorem and reduce to validity:

$$\Theta \models \varphi \; \text{iff} \; \bigwedge \Theta \rightarrow \varphi \, \text{is valid}.$$

- Now negate and test for unsatisfiability using DPLL.
- Different approach: Try to derive φ from Θ find a proof of φ from Θ .
- Use inference rules to derive new formulae from Θ . Continue to deduce new formulae until φ can be deduced.

Use deduction theorem and reduce to validity:

$$\Theta \models \varphi \; \text{iff} \; \bigwedge \Theta \rightarrow \varphi \; \text{is valid}.$$

- Now negate and test for unsatisfiability using DPLL.
- Different approach: Try to derive φ from Θ find a proof of φ from Θ .
- Use inference rules to derive new formulae from Θ . Continue to deduce new formulae until φ can be deduced.
- One particular calculus: tableaux.

Propositional Logic

Semantics

Propositional Tableaux

Propositional Logic

Cyritax

Semantics

- Goal: Prove the unsatisfiability of a formula.
- Tableaux algorithm for propositional logic is sound and complete.
- General principle: Break each formula into its components up to the simplest one, where contradiction is easy to spot.

- A tableaux is a tree. Each branch of that tree corresponds to one attempt to find a model for the input formula.
- Initial Tableaux consists of the node: $\land \ominus \land \neg \phi$
 - \blacksquare $\Theta \models \varphi$ iff $\land \Theta \rightarrow \varphi$ is valid iff $\neg(\land \Theta \rightarrow \varphi)$ is unsatisfiable iff $\wedge \Theta \wedge \neg \varphi$ is unsatisfiable
- The tableaux can be incrementally extended by applying rules:
 - And-Rule: If $\varphi \wedge \psi$ is in a branch, then add φ and ψ to it.
 - Or-Rule: If $\varphi \lor \psi$ is in a branch, then add φ to it, add a new branch, and add ψ to it.
 - Implication: If $\varphi \to \psi$ is in a branch, then add $\neg \varphi$ to it, add a new branch, and add ψ to it.

Propositional Tableaux

- Propositional Logic
- Cyrnax
- Semantics
- Terminology

■ NotNot: If $\neg\neg \varphi$ is in a branch, then add φ to it.

- NotAnd: If $\neg(\varphi \land \psi)$ is in a branch, then add $\neg \varphi$ to it, add a new branch, and add $\neg \psi$ to it.
- NotOr: If $\neg(\phi \lor \psi)$ is in a branch, then add $\neg \phi$ and $\neg \psi$ to it.
- NotImplication: If $\neg(\varphi \rightarrow \psi)$ is in a branch, then add φ and $\neg \psi$ to that branch.

Propositional Tableaux: Closed Tableaux

Propositional Logic

Symax

Semantics

- A branch is saturated if no more rule can be applied.
- A branch is closed if it contains formulae φ and $\neg \varphi$.
- A tableaux is closed if all branches are closed.
- If the tableaux is closed, this means no model for the input formula could be found, hence, its negation is valid.