Multi-Agent Systems

Propositional Logic

Albert-Ludwigs-Universität Freiburg

Proposi-

tional Logic

Terminology

Bernhard Nebel, Felix Lindner, and Thorsten Engesser April 17, 2018

Motivation: Deductive Agent

1: function action in $(\Delta \in D)$ out $(\alpha \in Ac)$

2: for all $\alpha \in Ac$ do 3: if $\Delta \vdash_{\rho} Do(\alpha)$ then 4: return α

5: end if

6: end for

7: for all $\alpha \in Ac$ do

if $\Delta \not\vdash_{\rho} \neg Do(\alpha)$ then

9: return α

10: end if

11: end for 12: return null

April 17, 2018

- $\hfill \Delta$: Set of formulae written in some logic.
- \vdash : Relation that holds between Δ s and formulae that can be derived from Δ .

The logical approach

Proposi-

tional Logic

- Define a formal language: logical & non-logical symbols, syntax rules
- Provide language with compositional semantics:
 - Fix universe of discourse
 - Specify how the non-logical symbols can be interpreted: interpretation
 - Rules how to combine interpretation of single symbols
 - Satisfying interpretation = model
 - Semantics often entails concept of logical implication / entailment
- Specify a calculus that allows to derive new formulae from old ones according to the entailment relation

April 17, 2018

Nebel, Lindner, Engesser - MAS

2 / 28

1 Propositional Logic

Propositional Logic

Synta

Semantic

Terminology

Nebel, Lindner, Engesser – MAS 3 / 28 April 17, 2018 Nebel, Lindner, Engesser – MAS

Propositional logic: main ideas

Propositional Logic

■ Non-logical symbols: propositional variables or atoms

representing propositions which cannot be decomposed

which can be true or false (for example: "Snow is white", "It

■ Logical symbols: propositional connectives such as: and (\land) , or (\lor) , and not (\neg)

Formulae: built out of atoms and connectives

Universe of discourse: truth values

April 17, 2018

Nebel, Lindner, Engesser - MAS

6 / 28

9 / 28

UNI FREIBURG

Proposi-

tional Logic

Terminology

2 Syntax

Propositional Logic

April 17, 2018

Nebel, Lindner, Engesser - MAS

8 / 28

Language and meta-language

 \blacksquare (a \lor b) is an expression of the language of propositional logic.

- $\phi ::= a | \dots | (\phi' \leftrightarrow \phi'')$ is a statement about how expressions in the language of propositional logic can be formed. It is stated using meta-language.
- In order to describe how expressions (in this case formulae) can be formed, we use meta-language.
- When we describe how to interpret formulae, we use meta-language expressions.

Syntax

April 17, 2018

Countable alphabet Σ of propositional variables: a, b, c, \dots Propositional formulae are built according to the following rule:

> atomic formula ::= falsity truth negation conjunction disjunction implication equivalence

Parentheses can be omitted if no ambiguity arises.

Proposi-

tional Logic

Terminology

Nebel, Lindner, Engesser - MAS

April 17, 2018

Nebel, Lindner, Engesser - MAS

3 Semantics

Propositional Logic

Syntax

Semantics

Terminology

April 17, 2018

April 17, 2018

Nebel, Lindner, Engesser - MAS

12 / 28

14 / 28

Semantics: idea

Propositional Logic

Gyritax

Semantics

Terminology

and the connectives.

Example:

$$(a \lor b) \land c$$

formula can be computed from the truth values of the atoms

is true iff c is true and, additionally, a or b is true.

Atomic propositions can be true (1, T) or false (0, F).

Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a

Logical implication can then be defined as follows:

lacktriangledown ϕ is implied by a set of formulae Θ iff ϕ is true for all truth assignments (world states) that make all formulae in Θ true.

April 17, 2018

Nebel, Lindner, Engesser - MAS

13 / 28

15 / 28

Formal semantics

An interpretation (or truth assignment) over Σ is a function:

$$\mathcal{I}\colon \Sigma \to \{T,F\}.$$

A formula ψ is true under \mathcal{I} or is satisfied by \mathcal{I} (symb. $\mathcal{I} \models \psi$):

Nebel, Lindner, Engesser – MAS

UNI FREIBURG

> Propositional Logic

Semantics

Semanics

Terminolog

Example

Given

$$\mathcal{I}: a \mapsto T, \ b \mapsto F, \ c \mapsto F, \ d \mapsto T,$$
Is $((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$ true or false?
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg (\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((\mathsf{a} \vee \mathsf{b}) \leftrightarrow (\mathsf{c} \vee \mathsf{d})) \wedge (\neg (\mathsf{a} \wedge \mathsf{c}) \vee (\mathsf{c} \wedge \neg \mathsf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg (\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

April 17, 2018

Nebel, Lindner, Engesser - MAS

Propositional Logic

Syntax

Semantics

4 Terminology

Propositional Logic

Semantics

Terminology

April 17, 2018

Nebel, Lindner, Engesser - MAS

17 / 28

Terminology

An interpretation \mathcal{I} is a model of φ iff $\mathcal{I} \models \varphi$. A formula φ is

- **satisfiable** if there is an \mathcal{I} such that $\mathcal{I} \models \varphi$;
- unsatisfiable, otherwise; and
- valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} (or tautology);
- falsifiable, otherwise.

Formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathcal{I} ,

$$\mathcal{I} \models \varphi \text{ iff } \mathcal{I} \models \psi.$$

April 17, 2018

Nebel, Lindner, Engesser - MAS

Examples

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

 \rightarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$

 \rightarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

 $((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$

April 17, 2018

- \rightarrow satisfiable: $a \mapsto T, b \mapsto T$
- valid: Consider all interpretations or argue about falsifying ones.

Equivalence? $\neg (a \lor b) \equiv \neg a \land \neg b$

→ Of course, equivalent (de Morgan).

Propositional Logic

Terminology

Proposition

 φ is valid iff $\neg \varphi$ is unsatisfiable.

 φ is satisfiable iff $\neg \varphi$ is falsifiable.

Some obvious consequences

Proposition

 $\varphi \equiv \psi$ iff $\varphi \leftrightarrow \psi$ is valid.

Theorem

If $\varphi \equiv \psi$, and χ' results from substituting φ by ψ in χ , then $\chi' \equiv \chi$.

April 17, 2018

Nebel, Lindner, Engesser - MAS

Propositional Logic

Terminology

UNI FREIBURG

Propositional Logic

Terminology

19 / 28

Some equivalences

double negation

Proposi-

tional Logic

Terminology

simplifications	$oldsymbol{arphi} ightarrow oldsymbol{\psi}$	\equiv	$\neg \phi \lor \psi$	$oldsymbol{arphi} \leftrightarrow oldsymbol{\psi}$	\equiv	$(\varphi \rightarrow \psi) \wedge$
						$(\psi ightarrow \phi)$
idempotency	$\phi \lor \phi$	\equiv	φ	$oldsymbol{arphi}\wedgeoldsymbol{arphi}$	\equiv	φ
commutativity	$\varphi \lor \psi$	\equiv	$\psi \lor \varphi$	$\varphi \wedge \psi$	\equiv	$\psi \wedge \varphi$
associativity	$(\varphi \lor \psi) \lor \chi$	\equiv	$\varphi \lor (\psi \lor \chi)$	$(\varphi \wedge \psi) \wedge \chi$	\equiv	$\varphi \wedge (\psi \wedge \chi)$
absorption	$\varphi \lor (\varphi \land \psi)$	\equiv	φ	$\varphi \wedge (\varphi \vee \psi)$	\equiv	φ

constants
$$\neg \top \equiv \bot \qquad \neg \bot \equiv \top$$
De Morgan $\neg (\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi \qquad \neg (\varphi \land \psi) \equiv \neg \varphi \lor \neg$
truth $\varphi \lor \top = \top \qquad \varphi \land \top = \varphi$

April 17, 2018 Nebel, Lindner, Engesser – MAS

How many different formulae are there ...

... for a given finite alphabet Σ ?

Propositional Logic

-,.....

Semantics

How many different logically distinguishable (not equivalent) formulae?

- A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
- For Σ with $n = |\Sigma|$, there are 2^n different interpretations.
- There are $2^{(2^n)}$ different sets of interpretations.

■ Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$

■ There are $2^{(2^n)}$ (logical) equivalence classes of formulae.

April 17, 2018

Nebel, Lindner, Engesser - MAS

22/2

Logical implication

Proposi-

tional Logic

Terminology

21 / 28

23 / 28

■ Extension of the relation \models to sets Θ of formulae:

$$\mathcal{I} \models \Theta$$
 iff $\mathcal{I} \models \varphi$ for all $\varphi \in \Theta$.

 ϕ is logically implied by Θ (symbolically $\Theta \models \phi$) iff ϕ is true in all models of Θ :

$$\Theta \models \varphi$$
 iff $\mathcal{I} \models \varphi$ for all \mathcal{I} such that $\mathcal{I} \models \Theta$

Some consequences:

- Deduction theorem: $\Theta \cup \{\phi\} \models \psi \text{ iff } \Theta \models \phi \rightarrow \psi$
- **■** Contraposition: $\Theta \cup \{\phi\} \models \neg \psi \text{ iff } \Theta \cup \{\psi\} \models \neg \phi$
- Contradiction: $\Theta \cup \{\phi\}$ is unsatisfiable iff $\Theta \models \neg \phi$

Deciding entailment

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$\Theta \models \varphi \; \text{iff} \; \bigwedge \Theta \rightarrow \varphi \; \text{is valid}.$$

Propositional Logic

Semantics

Terminology

- Now negate and test for unsatisfiability using DPLL.
- Different approach: Try to derive φ from Θ find a proof of φ from Θ .
- Use inference rules to derive new formulae from Θ . Continue to deduce new formulae until φ can be deduced.
- One particular calculus: tableaux.

April 17, 2018

Nebel, Lindner, Engesser - MAS

April 17, 2018

Nebel, Lindner, Engesser – MAS

Propositional Tableaux

tional Logic

Semantics

Terminology

- Goal: Prove the unsatisfiability of a formula.
- Tableaux algorithm for propositional logic is sound and complete.
- General principle: Break each formula into its components up to the simplest one, where contradiction is easy to spot.

April 17, 2018

Nebel, Lindner, Engesser - MAS

25 / 28

Propositional Tableaux

tional Logic

Semantics

Terminology

- NotNot: If $\neg \neg \varphi$ is in a branch, then add φ to it.
- NotAnd: If $\neg(\phi \land \psi)$ is in a branch, then add $\neg \phi$ to it, add a new branch, and add $\neg \psi$ to it.
- NotOr: If $\neg(\phi \lor \psi)$ is in a branch, then add $\neg \phi$ and $\neg \psi$ to it.
- NotImplication: If $\neg(\phi \rightarrow \psi)$ is in a branch, then add ϕ and $\neg \psi$ to that branch.

Propositional Tableaux

■ A tableaux is a tree. Each branch of that tree corresponds to one attempt to find a model for the input formula.

Propositional Logic

■ Initial Tableaux consists of the node: $\land \ominus \land \neg \phi$

- \blacksquare $\Theta \models \varphi$ iff $\land \Theta \rightarrow \varphi$ is valid iff $\neg(\land \Theta \rightarrow \varphi)$ is unsatisfiable iff $\wedge \Theta \wedge \neg \varphi$ is unsatisfiable
- The tableaux can be incrementally extended by applying rules:
 - And-Rule: If $\phi \wedge \psi$ is in a branch, then add ϕ and ψ to it.
 - Or-Rule: If $\phi \lor \psi$ is in a branch, then add ϕ to it, add a new branch, and add ψ to it.
 - lacksquare Implication: If $\phi o \psi$ is in a branch, then add $\neg \phi$ to it, add a new branch, and add ψ to it.

Nebel, Lindner, Engesser - MAS April 17, 2018

26 / 28

Propositional Tableaux: Closed Tableaux

Propositional Logic

Semantics

■ A branch is saturated if no more rule can be applied.

Terminology

- A branch is closed if it contains formulae φ and $\neg \varphi$.
- A tableaux is closed if all branches are closed.
- If the tableaux is closed, this means no model for the input formula could be found, hence, its negation is valid.

April 17, 2018 Nebel, Lindner, Engesser - MAS 27 / 28 April 17, 2018 Nebel, Lindner, Engesser - MAS

Terminology