Multi-Agent Systems

Propositional Logic

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser April 17, 2018

The logical approach

- Proposi-
- tional Logic Syntax
- Semantics

- Define a formal language: logical & non-logical symbols, syntax rules
- Provide language with compositional semantics:
 - Fix universe of discourse
 - Specify how the non-logical symbols can be interpreted: interpretation
 - Rules how to combine interpretation of single symbols
 - Satisfying interpretation = model
 - Semantics often entails concept of logical implication / entailment
- Specify a calculus that allows to derive new formulae from old ones – according to the entailment relation

Motivation: Deductive Agent


```
1: function action in (\Delta \in D) out (\alpha \in Ac)
```

- 2: for all $\alpha \in Ac$ do
- 3: if $\Delta \vdash_{\rho} Do(\alpha)$ then
- 4: return α
- 5: end if
- 6: end for
- 7: for all $\alpha \in Ac$ do
- 8: if $\Delta \not\vdash_{\rho} \neg Do(\alpha)$ then
- 9: return α
- 10: end if
- 11: end for
- 12: **return** null
 - \blacksquare \triangle : Set of formulae written in some logic.

Semantics

Proposi-

tional Logic Syntax

Semantics

- representing propositions which cannot be decomposed
- which can be true or false (for example: "Snow is white", "It rains")
- Logical symbols: propositional connectives such as: and (\(\lambda\), or (\(\nabla\), and not (\(\nabla\))
- Formulae: built out of atoms and connectives
- Universe of discourse: truth values

Propositional Logic

Symax

Semantics

ZE Z

Propositional Logic

Syntax

Semantics

tional Logic Syntax

Semantics

Terminology

Countable alphabet Σ of propositional variables: a,b,c,...Propositional formulae are built according to the following rule:

Parentheses can be omitted if no ambiguity arises.

Operator precedence:
$$\neg > \land > \lor > \rightarrow = \leftrightarrow$$
.

- ($a \lor b$) is an expression of the language of propositional logic.
- $\phi ::= a | \dots | (\phi' \leftrightarrow \phi'')$ is a statement about how expressions in the language of propositional logic can be formed. It is stated using meta-language.
- In order to describe how expressions (in this case formulae) can be formed, we use meta-language.
- When we describe how to interpret formulae, we use meta-language expressions.

tional Logic

Syntax

Semantics

Proposi-

tional Logic Syntax

Semantics

- Atomic propositions can be true (1, T) or false (0, F).
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- Example:

$$(a \lor b) \land c$$

is true iff c is true and, additionally, a or b is true.

Logical implication can then be defined as follows:

 φ is implied by a set of formulae Θ iff φ is true for all truth assignments (world states) that make all formulae in Θ true.

Formal semantics

NI REIBU

An interpretation (or truth assignment) over Σ is a function:

$$\mathcal{I}\colon \Sigma \to \{T,F\}.$$

A formula ψ is true under \mathcal{I} or is satisfied by \mathcal{I} (symb. $\mathcal{I} \models \psi$):

Propositional Logic

Symax

Semantics

Example

REIBUR

Given

$$\mathcal{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,$$

Is
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$
 true or false?

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

Propositional Logic

-,.....

Semantics

Z III

Propositional Logic

Syntax Semantics

Terminology

- **satisfiable** if there is an \mathcal{I} such that $\mathcal{I} \models \varphi$;
- unsatisfiable, otherwise; and
- valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} (or tautology);
- falsifiable, otherwise.

Formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathcal{I} ,

$$\mathcal{I} \models \varphi \text{ iff } \mathcal{I} \models \psi.$$

Propositional Logic

Symax

Semantics

Examples

FREIBU

Propositional Logic

Semantics

Terminology

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

- \rightarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$
- \rightarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

$$((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$$

- \rightarrow satisfiable: $a \mapsto T, b \mapsto T$
- valid: Consider all interpretations or argue about falsifying ones.

Equivalence?
$$\neg (a \lor b) \equiv \neg a \land \neg b$$

→ Of course, equivalent (de Morgan).

Some obvious consequences

FREBC

Proposition

 ϕ is valid iff $\neg \phi$ is unsatisfiable.

 φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposition

 $\varphi \equiv \psi$ iff $\varphi \leftrightarrow \psi$ is valid.

Theorem

If $\varphi \equiv \psi$, and χ' results from substituting φ by ψ in χ , then $\chi' \equiv \chi$.

Syntax

Semantics

Some equivalences

simplifications	$oldsymbol{arphi} ightarrow oldsymbol{\psi}$	\equiv	$ eg \varphi \lor \psi$	$\phi \leftrightarrow \psi$	\equiv	$(\varphi ightarrow \psi) \wedge$
						$(\psi \rightarrow \varphi)$
idempotency	$\phi \lor \phi$	\equiv	φ	$oldsymbol{arphi}\wedgeoldsymbol{arphi}$	\equiv	φ
commutativity	$\varphi \lor \psi$	\equiv	$\psi \lor \varphi$	$\varphi \wedge \psi$	\equiv	$\psi \wedge \varphi$
associativity	$(\varphi \lor \psi) \lor \chi$	\equiv	$\varphi \lor (\psi \lor \chi)$	$(\varphi \wedge \psi) \wedge \chi$	\equiv	$\varphi \wedge (\psi \wedge \chi)$
absorption	$\varphi \lor (\varphi \land \psi)$	\equiv	φ	$\varphi \wedge (\varphi \vee \psi)$	\equiv	φ
distributivity	$\varphi \wedge (\psi \vee \chi)$	\equiv	$(\varphi \wedge \psi) \vee$	$\varphi \lor (\psi \land \chi)$	\equiv	$(\varphi \lor \psi) \land$
			$(\varphi \wedge \chi)$			$(\varphi \lor \chi)$
double negation	$ eg \neg \phi$	\equiv	φ			
constants	$\neg \top$	\equiv	\perp	$\neg \bot$	\equiv	Τ
De Morgan	$\neg(\varphi \lor \psi)$	\equiv	$\neg \phi \wedge \neg \psi$	$\neg(\phi \wedge \psi)$	\equiv	$\neg \phi \lor \neg \psi$
truth	$oldsymbol{arphi}ee o$	\equiv	Τ	$oldsymbol{arphi}\wedge op$	\equiv	φ
falsity	$\varphi \lor \bot$	\equiv	φ	$\phi \wedge \bot$	=	1
taut./contrad.	$\varphi \lor \neg \varphi$	\equiv	T	$\phi \wedge \neg \phi$	\equiv	\perp

Propositional Logic

Syntax

Semantics

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$
- How many different logically distinguishable (not equivalent) formulae?
 - A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
 - For Σ with $n = |\Sigma|$, there are 2^n different interpretations.
 - There are $2^{(2^n)}$ different sets of interpretations.
 - There are 2^(2ⁿ) (logical) equivalence classes of formulae.

Propositional Logic

- ,

Semantics

Logical implication

Propositional Logic

Syritax

Semantics

Terminology

■ Extension of the relation \models to sets Θ of formulae:

$$\mathcal{I} \models \Theta \text{ iff } \mathcal{I} \models \varphi \text{ for all } \varphi \in \Theta.$$

 ϕ is logically implied by Θ (symbolically $\Theta \models \phi$) iff ϕ is true in all models of Θ :

$$\Theta \models \varphi$$
 iff $\mathcal{I} \models \varphi$ for all \mathcal{I} such that $\mathcal{I} \models \Theta$

Some consequences:

- Deduction theorem: $\Theta \cup \{\phi\} \models \psi$ iff $\Theta \models \phi \rightarrow \psi$
- Contraposition: $\Theta \cup \{\phi\} \models \neg \psi$ iff $\Theta \cup \{\psi\} \models \neg \phi$
- Contradiction: $\Theta \cup \{\phi\}$ is unsatisfiable iff $\Theta \models \neg \phi$

Deciding entailment

- Propositional Logic
- Syntax
- Semantics
- Terminology

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$\Theta \models \varphi \; \text{iff} \; \bigwedge \Theta \rightarrow \varphi \; \text{is valid}.$$

- Now negate and test for unsatisfiability using DPLL.
- Different approach: Try to derive φ from Θ find a proof of φ from Θ .
- Use inference rules to derive new formulae from Θ . Continue to deduce new formulae until φ can be deduced.
- One particular calculus: tableaux.

FREIBL -

Propositional Logic

- ,

Semantics

- Goal: Prove the unsatisfiability of a formula.
- Tableaux algorithm for propositional logic is sound and complete.
- General principle: Break each formula into its components up to the simplest one, where contradiction is easy to spot.

- A tableaux is a tree. Each branch of that tree corresponds to one attempt to find a model for the input formula.
- Initial Tableaux consists of the node: $\land \ominus \land \neg \phi$
 - $\Theta \models \varphi$ iff $\bigwedge \Theta \rightarrow \varphi$ is valid iff $\neg(\bigwedge \Theta \rightarrow \varphi)$ is unsatisfiable iff $\bigwedge \Theta \land \neg \varphi$ is unsatisfiable
- The tableaux can be incrementally extended by applying rules:
 - And-Rule: If $\phi \land \psi$ is in a branch, then add ϕ and ψ to it.
 - Or-Rule: If $\varphi \lor \psi$ is in a branch, then add φ to it, add a new branch, and add ψ to it.
 - Implication: If $\varphi \to \psi$ is in a branch, then add $\neg \varphi$ to it, add a new branch, and add ψ to it.

- Propositional Logic
- Oyman
- Semantics
- Terminology

- NotNot: If $\neg \neg \varphi$ is in a branch, then add φ to it.
- NotAnd: If $\neg(\varphi \land \psi)$ is in a branch, then add $\neg \varphi$ to it, add a new branch, and add $\neg \psi$ to it.
- NotOr: If $\neg(\phi \lor \psi)$ is in a branch, then add $\neg \phi$ and $\neg \psi$ to it.
- NotImplication: If $\neg(\varphi \rightarrow \psi)$ is in a branch, then add φ and $\neg \psi$ to that branch.

Propositional Logic

Syntax

Semantics

- A branch is saturated if no more rule can be applied.
- A branch is closed if it contains formulae φ and $\neg \varphi$.
- A tableaux is closed if all branches are closed.
- If the tableaux is closed, this means no model for the input formula could be found, hence, its negation is valid.