Multi-Agent Systems

B. Nebel, F. Lindner, T. Engesser Winter Semester 2018/19 University of Freiburg Department of Computer Science

Exercise Sheet 7 Due: December 10, 2018, 16:00

Exercise 7.1 (Nagel-Schreckenberg Model, 2+2)

Nagel and Schreckenberg employ cellular automata to model traffic flow.¹ Your task is to represent a concrete traffic situation within the Nagel-Schreckenberg model and to predict the system's future behavior based on the model.

Figure 1: Some traffic situation in the Nagel-Schreckenberg Model

- (a) According to the model, what are the possible values for the velocity v_3 of car 3 in the next iteration? Consider the cases p = 0, p = 0.25 and p = 1 (given $v_{\text{max}} = 5$).
- (b) Illustrate the most probable successor state for the next two iterations, given that p = 0.1, $v_{\text{max}} = 5$, and that car 4 (due to randomization) remains on its cell for the first iteration.

Exercise 7.2 (GOAL and Prolog, 4+4)

Your first task is to install the GOAL framework and familiarize yourself with the environment. You can find information on how to set up everything, as well as tutorials and a very detailed programming guide at https://goalapl.atlassian.net/wiki.² To get familiar with Prolog, visit http://lpn.swi-prolog.org.

- (a) Generate the included Hello World example project (in the GOAL perspective click File \rightarrow New \rightarrow GOAL example project) and try to understand what is going on (explanations can be found in the programming guide). Take a closer look at HelloWorld10x.mas2g.
- (b) Change the agent of the HelloWorld10x-Example to successively print out the numbers of the Collatz sequence³ beginning with an arbitrary positive integer c_0 (e.g., try it with $c_0 = 27$). The n + 1-th number in the sequence can be computed by:

$$c_{n+1} = \begin{cases} c_n / 2 & c_n \text{ is even} \\ 3c_n + 1 & c_n \text{ is odd} \end{cases}$$

The agent's goal is to eventually output number 1.

Please export your Eclipse project as an archive file and submit it to engesser@cs.uni-freiburg.de.

¹Check out the original article: http://www.pd.infn.it/~agarfa/didattica/met_comp/lab_20140108/1992_ origca.pdf

²We have tested the GOAL environment on Ubuntu with a standalone version of Eclipse 2018-09. ³https://de.wikipedia.org/wiki/Collatz-Problem