Principles of AI Planning
 19. Planning with State-Dependent Action Costs

Bernhard Nebel and Robert Mattmüller
February 1st, 2019

Background
State-Dependent
Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams

Background

What are State-Dependent Action Costs?

Background
State-Dependent
Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations
Abstractions
Summary
References

What are State-Dependent Action Costs?

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations

Abstractions

Action costs:

state-dependent
$\operatorname{cost}(f l y($ Madrid, London $))=1, \quad \operatorname{cost}($ fly $($ Paris, London $))=1$, $\operatorname{cost}(f l y($ Freiburg, London $))=1, \quad \operatorname{cost}(f l y($ Istanbul, London $))=1$.

What are State-Dependent Action Costs?

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations

Abstractions

Action costs:

state-dependent
$\operatorname{cost}($ fly $($ Madrid, London $))=14, \quad \operatorname{cost}($ fly $($ Paris, London $))=5$, $\operatorname{cost}(f l y($ Freiburg, London $))=10, \quad \operatorname{cost}($ fly $($ Istanbul, London $))=32$.

What are State-Dependent Action Costs?

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations

Abstractions

$$
\begin{aligned}
& \text { Action costs: unit constant state-dependent } \\
& \begin{aligned}
\operatorname{cost}(f l y T o(\text { London })) & =\left|x_{\text {London }}-x_{\text {current }}\right|+\left|y_{\text {London }}-y_{\text {current }}\right| \\
& =\left|x_{\text {current }}\right|+\left|y_{\text {current }}\right| .
\end{aligned}
\end{aligned}
$$

Why Study State-Dependent Action Costs?

- In classical planning: actions have unit costs.
- Each action a costs 1.
- Simple extension: actions have constant costs.
- Each action a costs some $\operatorname{cost}_{a} \in \mathbb{N}$.
- Example: Flying between two cities costs amount proportional to distance.
- Still easy to handle algorithmically, e. g. when computing g and h values.

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations
Abstractions

- Further extension: actions have state-dependent costs.
- Each action a has cost function $\operatorname{cost}_{a}: S \rightarrow \mathbb{N}$.
- Example: Flying to a destination city costs amount proportional to distance, depending on the current city.

Why Study State-Dependent Action Costs?

■ Human perspective:

■ "natural", "elegant", and "higher-level"

- modeler-friendly \rightsquigarrow less error-prone?
- Machine perspective:
- more structured \rightsquigarrow exploit structure in algorithms?
- fewer redundancies, exponentially more compact

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams

- Language support:
- numeric PDDL, PDDL 3
\square RDDL, MDPs (state-dependent rewards!)
- Applications:
- modeling preferences and soft goals
- application domains such as PSR
(Abbreviation: SDAC = state-dependent action costs)

Handling State-Dependent Action Costs

Good news:

- Computing g values in forward search still easy. (When expanding state s with action a, we know $\operatorname{cost}_{a}(s)$.)

Background
State-Dependent Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams
Compilation

- Or can we simply compile SDAC away?

This chapter:

- Proposed answers to these challenges.

Handling State-Dependent Action Costs

Roadmap:

1 Look at compilations.
2 This leads to edge-valued multi-valued decision diagrams (EVMDDs) as data structure to represent cost functions.
3 Based on EVMDDs, formalize and discuss:

State-Dependent

- compilations
- relaxation heuristics
- abstraction heuristics

State-Dependent Action Costs

Definition

A SAS ${ }^{+}$planning task with state-dependent action costs or SDAC planning task is a tuple $\Pi=\left\langle V, I, O, \gamma,\left(\operatorname{cost}_{a}\right)_{a \in O}\right\rangle$ where $\langle V, I, O, \gamma\rangle$ is a (regular) SAS^{+}planning task with state set S and $\operatorname{cost}_{a}: S \rightarrow \mathbb{N}$ is the cost function of a for all $a \in O$.

Assumption: For each $a \in O$, the set of variables occuring in the precondition of a is disjoint from the set of variables on which the cost function cost_{a} depends.
(Question: Why is this assumption unproblematic?)
Definitions of plans etc. stay as before. A plan is optimal if it minimizes the sum of action costs from start to goal.

For the rest of this chapter, we consider the following running example.

State-Dependent Action Costs Running Example

Example (Household domain)

Actions:

$$
\begin{aligned}
\text { vacuumFloor } & =\langle T, \text { floorClean }\rangle \\
\text { washDishes } & =\langle T, \text { dishesClean }\rangle \\
\text { doHousework } & =\langle T, \text { floorClean } \wedge \text { dishesClean }\rangle
\end{aligned}
$$

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations
Abstractions
$\operatorname{cost}_{\text {vacuumFloor }}=[\neg$ floorClean $] \cdot 2$ $\operatorname{cost}_{\text {washDishes }}=[\neg$ dishesClean $] \cdot(1+2 \cdot[\neg$ haveDishwasher $])$
$\operatorname{cost}_{\text {doHousework }}=\operatorname{cost}_{\text {vacuumFloor }}+\operatorname{cost}_{\text {washDishes }}$
(Question: How much can applying action washDishes cost?)

State-Dependent Action Costs

Compilations

Background
State-Dependent Action Costs

Different ways of compiling SDAC away:

- Compilation I: "Parallel Action Decomposition"
- Compilation II: "Purely Sequential Action Decomposition"
- Compilation III: "EVMDD-Based Action Decomposition" (combination of Compilations I and II)

State-Dependent Action Costs

Compilation I: "Parallel Action Decomposition"

Example

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations
Abstractions
Summary
References
washDishes ($\mathrm{dC}, \mathrm{hD})=\langle\mathrm{dC} \wedge \mathrm{hD}, \mathrm{dC}\rangle$, cost $=0$
washDishes $(\mathrm{dC}, \neg \mathrm{hD})=\langle\mathrm{dC} \wedge \neg \mathrm{hD}, \mathrm{dC}\rangle, \quad \operatorname{cost}=0$
washDishes $(\neg \mathrm{dC}, \mathrm{hD})=\langle\neg \mathrm{dC} \wedge \mathrm{hD}, \mathrm{dC}\rangle, \quad$ cost $=1$
washDishes $(\neg \mathrm{dC}, \neg \mathrm{hD})=\langle\neg \mathrm{dC} \wedge \neg \mathrm{hD}, \mathrm{dC}\rangle, \quad$ cost $=3$

State-Dependent Action Costs

Compilation I: "Parallel Action Decomposition"

Compilation I

Transform each action into multiple actions:

- one for each partial state relevant to cost function
- add partial state to precondition
- use cost for partial state as constant cost

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations
Abstractions

Properties:
always possible
X exponential blow-up

Question: Exponential blow-up avoidable? \rightsquigarrow Compilation II

State-Dependent Action Costs

Compilation II: "Purely Sequential Action Decomposition"

Example

Assume we own a dishwasher:

$$
\operatorname{cost}_{\text {doHousework }}=2 \cdot[\neg \text { floorClean }]+[\neg \text { dishesClean }]
$$

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations
Abstractions
Summary
References

$$
\begin{array}{ll}
\text { doHousework }_{1}(\mathrm{fC})=\langle\mathrm{fC}, \mathrm{fC}\rangle, & \text { cost }=0 \\
\text { doHousework }_{1}(\neg \mathrm{fC})=\langle\neg \mathrm{fC}, \mathrm{fC}\rangle, & \text { cost }=2 \\
\text { doHousework }_{2}(\mathrm{dC})=\langle\mathrm{dC}, \mathrm{dC}\rangle, & \text { cost }=0 \\
\text { doHousework }_{2}(\neg \mathrm{dC})=\langle\neg \mathrm{dC}, \mathrm{dC}\rangle, & \text { cost }=1
\end{array}
$$

State-Dependent Action Costs

Compilation II: "Purely Sequential Action Decomposition"

Background
State-Dependent Action Costs
Edge-Valued Multi-Valued Decision Diagrams

Compilation II

If costs are additively decomposable/separable:

- high-level actions \approx macro actions
decompose into sequential micro actions

State-Dependent Action Costs

Compilation II: "Purely Sequential Action Decomposition"

Properties:

only linear blow-up
not always possible

- plan lengths not preserved

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation doHousework
in the SDAC setting is replaced by an application of the action sequence

$$
\text { doHousework }_{1}(\neg \mathrm{fC}) \text {, doHousework }{ }_{2}(\neg \mathrm{dC})
$$

in the compiled setting.

State-Dependent Action Costs

Compilation II: "Purely Sequential Action Decomposition"

Properties (ctd.):

- plan costs preserved
- blow-up in search space
E. g., in a state where $\neg \mathrm{fC}$ and $\neg \mathrm{dC}$ hold, should we apply doHousework $_{1}(\neg \mathrm{fC})$ or doHousework ${ }_{2}(\neg \mathrm{dC})$ first?
\rightsquigarrow impose action ordering!
- attention: we should apply all partial effects at end! Otherwise, an effect of an earlier action in the compilation might affect the cost of a later action in the compilation.

Question: Can this always work (kind of)? \rightsquigarrow Compilation III

State-Dependent Action Costs

Compilation III: "EVMDD-Based Action Decomposition"

Example

$$
\begin{aligned}
\operatorname{cost}_{\text {doHousework }}= & {[\neg \text { floorClean }] \cdot 2+} \\
& {[\neg \text { dishesClean }] \cdot(1+2 \cdot[\neg \text { haveDishwasher }]) }
\end{aligned}
$$

Background
State-Dependent Action Costs
Edge-Valued Multi-Valued Decision Diagram

Compilation
Relaxations
Abstractions
Summary
References

Simplify right-hand part of diagram:

- Branch over single variable at a time.
- Exploit: haveDishwasher irrelevant if dishesClean is true.

State-Dependent Action Costs

Compilation III: "EVMDD-Based Action Decomposition"

Example (ctd.)

Background State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams
Compilation
Relaxations
Abstractions
Summary
References

Later:
\square Compiled actions

- Auxiliary variables to enforce action ordering

State-Dependent Action Costs

Compilation III: "EVMDD-Based Action Decomposition"

Compilation III

- exploit as much additive separability as possible
- multiply out variable domains where inevitable
- Technicalities:
- fix variable ordering
- perform Shannon and isomorphism reduction (cf. theory of BDDs)

Background
State-Dependent Action Costs
Edge-Valued
Multi-Valued
Decision Diagrams

Properties:
\checkmark always possible

- worst-case exponential blow-up, but as good as it gets
- as with Compilation II: plan lengths not preserved, plan costs preserved
- as with Compilation II: action ordering, all effects at end!

State-Dependent Action Costs

Compilation III: "EVMDD-Based Action Decomposition"

Background
Compilation III provides optimal combination of sequential and parallel action decomposition, given fixed variable ordering.

Question: How to find such decompositions automatically?
Answer: Figure for Compilation III basically a reduced ordered edge-valued multi-valued decision diagram (EVMDD)!
[Lai et al., 1996; Ciardo and Siminiceanu, 2002]

EVMDDs

Edge-Valued Multi-Valued Decision Diagrams

EVMDDs:

- Decision diagrams for arithmetic functions
- Decision nodes with associated decision variables
- Edge weights: partial costs contributed by facts
- Size of EVMDD compact in many "typical", well-behaved cases (Question: For example?)

Background
State-Dependent Action Costs

Properties:

\checkmark satisfy all requirements for Compilation III, even (almost) uniquely determined by them

\checkmarkalready have well-established theory and tool support
detect and exhibit additive structure in arithmetic functions

EVMDDs

Edge-Valued Multi-Valued Decision Diagrams

Background

Consequence:

- represent cost functions as EVMDDs
- exploit additive structure exhibited by them
- draw on theory and tool support for EVMDDs

State-Dependent Action Costs

Two perspectives on EVMDDs:

- graphs specifying how to decompose action costs
- data structures encoding action costs (used independently from compilations)

EVMDDs

Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)

$$
\operatorname{cost}_{a}=x y^{2}+z+2
$$

$$
\mathscr{D}_{x}=\mathscr{D}_{z}=\{0,1\}, \mathscr{D}_{y}=\{0,1,2\}
$$

- Directed acyclic graph
- Dangling incoming edge
- Single terminal node 0
- Decision nodes with:
- decision variables
- edge label
- edge weights
- We see: z independent from rest, y only matters if $x \neq 0$.

EVMDDs

Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)

$\operatorname{cost}_{a}=x y^{2}+z+2$

$$
\mathscr{D}_{x}=\mathscr{D}_{z}=\{0,1\}, \mathscr{D}_{y}=\{0,1,2\}
$$

URE|BURG
Background
State-Dependent Action Costs
Edge-Valued Multi-Valued Decision Diagrams

Compilation
Relaxations
Abstractions
Summary
References

EVMDDs

Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)

$\operatorname{cost}_{a}=x y^{2}+z+2$

$$
\mathscr{D}_{x}=\mathscr{D}_{z}=\{0,1\}, \mathscr{D}_{y}=\{0,1,2\}
$$

$$
s=\{x \mapsto 1, y \mapsto 2, z \mapsto 0\}
$$

$$
=\operatorname{cost}_{a}(s)=2+
$$

Background
State-Dependent Action Costs
Edge-Valued Multi-Valued Decision Diagrams

Compilation
Relaxations
Abstractions
Summary
References

EVMDDs

Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)

$\operatorname{cost}_{a}=x y^{2}+z+2$

$$
\mathscr{D}_{x}=\mathscr{D}_{z}=\{0,1\}, \mathscr{D}_{y}=\{0,1,2\}
$$

$$
s=\{x \mapsto 1, y \mapsto 2, z \mapsto 0\}
$$

$$
\operatorname{cost}_{a}(s)=2+0+
$$

Background
State-Dependent Action Costs
Edge-Valued Multi-Valued Decision Diagrams

Compilation
Relaxations
Abstractions
Summary
References

EVMDDs

Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)

$\operatorname{cost}_{a}=x y^{2}+z+2$

$$
\mathscr{D}_{x}=\mathscr{D}_{z}=\{0,1\}, \mathscr{D}_{y}=\{0,1,2\}
$$

$$
s=\{x \mapsto 1, y \mapsto 2, z \mapsto 0\}
$$

$$
\operatorname{cost}_{a}(s)=2+0+4+
$$

Background
State-Dependent Action Costs
Edge-Valued Multi-Valued Decision Diagrams

Compilation
Relaxations
Abstractions
Summary
References

EVMDDs

Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)

$\operatorname{cost}_{a}=x y^{2}+z+2$

$$
\mathscr{D}_{x}=\mathscr{D}_{z}=\{0,1\}, \mathscr{D}_{y}=\{0,1,2\}
$$

$$
\begin{aligned}
& s=\{x \mapsto 1, y \mapsto 2, z \mapsto 0\} \\
& \operatorname{cost}_{a}(s)=2+0+4+0=6
\end{aligned}
$$

Background
State-Dependent Action Costs
Edge-Valued Multi-Valued Decision Diagrams

Compilation
Relaxations
Abstractions
Summary
References

EVMDDs

Edge-Valued Multi-Valued Decision Diagrams

Background
State-Dependent Action Costs

Properties of EVMDDs:

\checkmark Existence for finitely many finite-domain variables
\checkmark Uniqueness/canonicity if reduced and ordered
\checkmark Basic arithmetic operations supported
(Lai et al., 1996; Ciardo and Siminiceanu, 2002)

EVMDDs

Arithmetic operations on EVMDDs

Given arithmetic operator $\otimes \in\{+,-, \cdot, \ldots\}$, EMVDDs $\mathscr{E}_{1}, \mathscr{E}_{2}$.
Compute EVMDD $\mathscr{E}=\mathscr{E}_{1} \otimes \mathscr{E}_{2}$.
Implementation: procedure $\operatorname{apply}\left(\otimes, \mathscr{E}_{1}, \mathscr{E}_{2}\right)$:

- Base case: single-node EVMDDs encoding constants

■ Inductive case: apply \otimes recursively:

- push down edge weights
- recursively apply \otimes to corresponding children

Background
State-Dependent Action Costs
Edge-Valued Multi-Valued
Decision Diagrams

- pull up excess edge weights from children

Time complexity [Lai et al., 1996]:

- additive operations: product of input EVMDD sizes

■ in general: exponential

Background
Compilation
Relaxations
Abstractions

Compilation

EVMDD-Based Action Compilation

Idea: each edge in the EVMDD becomes a new micro action with constant cost corresponding to the edge constraint, precondition that we are currently at its start EVMDD node, and effect that we are currently at its target EVMDD node.

Background
Compilation
Relaxations
Abstractions

Let $a=\langle\chi, e\rangle, \operatorname{cost}_{a}=x y^{2}+z+2$.
Auxiliary variables:

- One semaphore variable σ with $\mathscr{D}_{\sigma}=\{0,1\}$ for entire planning task.
- One auxiliary variable $\alpha=\alpha_{a}$ with $\mathscr{D}_{\alpha_{a}}=\{0,1,2,3,4\}$ for action a.

Replace a by new auxiliary actions (similarly for other actions).

EVMDD-Based Action Compilation

Example (EVMDD-based action compilation, ctd.)

$$
a^{\chi}=\langle\chi \wedge \sigma=0 \wedge \alpha=0
$$

$\alpha=0$

$$
\sigma:=1 \wedge \alpha:=1\rangle
$$

$$
\cos t=2
$$

$$
a^{1, x=0}=\langle\alpha=1 \wedge x=0, \alpha:=3\rangle, \quad \text { cost }=0
$$

$$
a^{1, x=1}=\langle\alpha=1 \wedge x=1, \alpha:=2\rangle,
$$

$$
\cos t=0
$$

$$
a^{2, y=0}=\langle\alpha=2 \wedge y=0, \alpha:=3\rangle, \quad \text { cost }=0
$$

$$
a^{2, y=1}=\langle\alpha=2 \wedge y=1, \alpha:=3\rangle, \quad \text { cost }=1
$$

$$
a^{2, y=2}=\langle\alpha=2 \wedge y=2, \alpha:=3\rangle, \quad \text { cost }=4
$$

$$
a^{3, z=0}=\langle\alpha=3 \wedge z=0, \alpha:=4\rangle, \quad \text { cost }=0
$$

$$
a^{3, z=1}=\langle\alpha=3 \wedge z=1, \alpha:=4\rangle, \quad \cos t=1
$$

$$
a^{e}=\langle\alpha=4, e \wedge \sigma:=0 \wedge \alpha:=0\rangle, \quad \text { cost }=0
$$

Background
Compilation
Relaxations
Abstractions
Summary
References

EVMDD-Based Action Compilation

Definition (EVMDD-based action compilation)

Let $\Pi=\left\langle V, I, O, \gamma,\left(\operatorname{cost}_{a}\right)_{a \in O}\right\rangle$ be an SDAC planning task, and for each action $a \in O$, let \mathscr{E}_{a} be an EVMDD that encodes the cost function cost $_{a}$.
Let $E A C(a)$ be the set of actions created from a using \mathscr{E}_{a}

Background
Compilation
Relaxations
Abstractions similar to the previous example. Then the EVMDD-based action compilation of Π using $\mathscr{E}_{a}, a \in O$, is the task $\Pi^{\prime}=E A C(\Pi)=\left\langle V^{\prime}, I^{\prime}, O^{\prime}, \gamma^{\prime}\right\rangle$, where

- $V^{\prime}=V \cup\{\sigma\} \cup\left\{\alpha_{a} \mid a \in O\right\}$,
$\square I^{\prime}=I \cup\{\sigma \mapsto 0\} \cup\left\{\alpha_{a} \mapsto 0 \mid a \in O\right\}$,
- $O^{\prime}=\bigcup_{a \in O} E A C(a)$, and
- $\gamma^{\prime}=\gamma \wedge(\sigma=0) \wedge \wedge_{a \in O}\left(\alpha_{a}=0\right)$.

EVMDD-Based Action Compilation

Let Π be an SDAC task and $\Pi^{\prime}=E A C(\Pi)$ its EVMDD-based action compilation (for appropriate EVMDDs \mathscr{E}_{a}).

Proposition

Π^{\prime} has only state-independent costs.

Proof.

By construction.

Proposition

The size $\left\|\Pi^{\prime}\right\|$ is in the order $O\left(\|\Pi\| \cdot \max _{a \in O}\left\|\mathscr{E}_{a}\right\|\right)$, i. e. polynomial in the size of Π and the largest used EVMDD.

Proof.
By construction.

EVMDD-Based Action Compilation

Let Π be an SDAC task and $\Pi^{\prime}=E A C(\Pi)$ its EVMDD-based action compilation (for appropriate EVMDDs \mathscr{E}_{a}).

Proposition

Π and Π^{\prime} admit the same plans (up to replacement of actions by action sequences). Optimal plan costs are preserved.

Proof.

Let $\pi=a_{1}, \ldots, a_{n}$ be a plan for Π, and let s_{0}, \ldots, s_{n} be the corresponding state sequence such that a_{i} is applicable in s_{i-1} and leads to s_{i} for all $i=1, \ldots, n$.
For each $i=1, \ldots, n$, let $\mathscr{E}_{\mathrm{a}_{i}}$ be the EVMDD used to compile a_{i}. State s_{i-1} determines a unique path through the EVMDD $\mathscr{E}_{a_{i}}$, which uniquely corresponds to an action sequence $a_{i}^{0}, \ldots, a_{i}^{k_{i}}$ (for some $k_{i} \in \mathbb{N}$; including a_{i}^{χ} and a_{i}^{e}).

EVMDD-Based Action Compilation

Proof (ctd.)

By construction, $\operatorname{cost}\left(a_{i}^{0}\right)+\cdots+\operatorname{cost}\left(a_{i}^{k_{i}}\right)=\operatorname{cost}_{a_{i}}\left(s_{i-1}\right)$.
Moreover, the sequence $a_{i}^{0}, \ldots, a_{i}^{k_{i}}$ is applicable in
$s_{i-1} \cup\{\sigma \mapsto 0\} \cup\left\{\alpha_{a} \mapsto 0 \mid a \in O\right\}$ and leads to
$s_{i} \cup\{\sigma \mapsto 0\} \cup\left\{\alpha_{a} \mapsto 0 \mid a \in O\right\}$.

Background
Compilation
Relaxations
Abstractions
Summary
References

Therefore, by induction, $\pi^{\prime}=a_{1}^{0}, \ldots, a_{1}^{k_{1}}, \ldots, a_{n}^{0}, \ldots, a_{n}^{k_{n}}$ is applicable in $s_{0} \cup\{\sigma \mapsto 0\} \cup\left\{\alpha_{a} \mapsto 0 \mid a \in O\right\}$ (and leads to a goal state). Moreover, $\operatorname{cost}\left(\pi^{\prime}\right)=\operatorname{cost}\left(a_{1}^{0}\right)+\cdots+\operatorname{cost}\left(a_{1}^{k_{1}}\right)+\cdots+\operatorname{cost}\left(a_{n}^{0}\right)+\cdots+\operatorname{cost}\left(a_{n}^{k_{n}}\right)=$ $\operatorname{cost}_{a_{1}}\left(s_{0}\right)+\cdots+\operatorname{cost}_{a_{n}}\left(s_{n-1}\right)=\operatorname{cost}(\pi)$.
Still to show: Π^{\prime} admits no other plans. It suffices to see that the semaphore σ prohibits interleaving more than one EVMDD evaluation, and that each α_{a} makes sure that the EVMDD for a is traversed in the unique correct order.

EVMDD-Based Action Compilation

Example

Let $\Pi=\langle V, I, O, \gamma\rangle$ with $V=\{x, y, z, u\}, \mathscr{D}_{x}=\mathscr{D}_{z}=\{0,1\}$, $\mathscr{D}_{y}=\mathscr{D}_{u}=\{0,1,2\}, I=\{x \mapsto 1, y \mapsto 2, z \mapsto 0, u \mapsto 0\}$,
$O=\{a, b\}$, and $\gamma=(u=2)$ with

$$
\begin{array}{ll}
a=\langle u=0, u:=1\rangle, & \operatorname{cost}_{a}=x y^{2}+z+2, \\
b=\langle u=1, u:=2\rangle, & \operatorname{cost}_{b}=z+1 .
\end{array}
$$

Optimal plan for Π :

$$
\pi=a, b \text { with } \operatorname{cost}(\pi)=6+1=7 .
$$

EVMDD-Based Action Compilation

Example (Ctd.)

Compilation of a :

$$
a^{\chi}=\left\langle u=0 \wedge \sigma=0 \wedge \alpha_{a}=0\right.
$$

$$
\alpha_{a}=0
$$

$$
\left.\sigma:=1 \wedge \alpha_{a}:=1\right\rangle
$$

$$
\cos t=2
$$

$$
\begin{array}{rlrl}
a^{1, x=0} & =\left\langle\alpha_{a}=1 \wedge x=0, \alpha_{a}:=3\right\rangle, & & \cos t=0 \\
a^{1, x=1}=\left\langle\alpha_{a}=1 \wedge x=1, \alpha_{a}:=2\right\rangle, & & \cos t=0 \\
a^{2, y=0}=\left\langle\alpha_{a}=2 \wedge y=0, \alpha_{a}:=3\right\rangle, & & \operatorname{cost}=0 \\
a^{2, y=1}=\left\langle\alpha_{a}=2 \wedge y=1, \alpha_{a}:=3\right\rangle, & & \cos t=1 \\
a^{2, y=2}=\left\langle\alpha_{a}=2 \wedge y=2, \alpha_{a}:=3\right\rangle, & & \cos t=4 \\
a^{3, z=0}=\left\langle\alpha_{a}=3 \wedge z=0, \alpha_{a}:=4\right\rangle, & & \cos t=0 \\
a^{3, z=1}=\left\langle\alpha_{a}=3 \wedge z=1, \alpha_{a}:=4\right\rangle, & & \cos t=1 \\
a^{e} & =\left\langle\alpha_{a}=4, u:=1 \wedge \sigma:=0 \wedge \alpha_{a}:=0\right\rangle, & \text { cost }=0
\end{array}
$$

Background
Compilation
Relaxations
Abstractions
Summary
References

Example (Ctd.)

Compilation of b :

$$
b^{\chi}=\left\langle u=1 \wedge \sigma=0 \wedge \alpha_{b}=0\right.
$$

$$
\left.\sigma:=1 \wedge \alpha_{b}:=1\right\rangle
$$

$$
\operatorname{cost}=1
$$

$$
b^{1, z=0}=\left\langle\alpha_{b}=1 \wedge z=0, \alpha_{b}:=2\right\rangle, \quad \text { cost }=0
$$

Background
Compilation
Relaxations
Abstractions
Summary
References

$$
b^{1, z=1}=\left\langle\alpha_{b}=1 \wedge z=1, \alpha_{b}:=2\right\rangle, \quad \cos t=1
$$

$$
b^{e}=\left\langle\alpha_{b}=2, u:=2 \wedge \sigma:=0 \wedge \alpha_{b}:=0\right\rangle, \quad \text { cost }=0
$$

EVMDD-Based Action Compilation

Example (Ctd.)

Compilation of b :

$$
b^{\chi}=\left\langle u=1 \wedge \sigma=0 \wedge \alpha_{b}=0\right.
$$

$$
\begin{array}{rlrl}
\left.\sigma:=1 \wedge \alpha_{b}:=1\right\rangle, & & \cos t=1 \\
b^{1, z=0} & =\left\langle\alpha_{b}=1 \wedge z=0, \alpha_{b}:=2\right\rangle, & & \cos t=0 \\
b^{1, z=1}=\left\langle\alpha_{b}=1 \wedge z=1, \alpha_{b}:=2\right\rangle, & & \cos t=1 \\
b^{e}=\left\langle\alpha_{b}=2, u:=2 \wedge \sigma:=0 \wedge \alpha_{b}:=0\right\rangle, & & \cos t=0
\end{array}
$$

Background
Compilation
Relaxations
Abstractions
Summary
References

Optimal plan for $\Pi^{\prime}\left(\right.$ with $\left.\operatorname{cost}\left(\pi^{\prime}\right)=6+1=7=\operatorname{cost}(\pi)\right)$:

$$
\pi^{\prime}=\underbrace{a^{\chi}, a^{1, x=1}, a^{2, y=2}, a^{3, z=0}, a^{e}}_{\cos t=2+0+4+0+0=6}, \underbrace{b^{\chi}, b^{1, z=0}, b^{e}}_{\cos t=1+0+0=1}
$$

Planning with State-Dependent Action Costs

- Okay. We can compile SDAC away somewhat efficiently. Is this the end of the story?
- No! Why not?

Compilation

- Tighter integration of SDAC into planning process might be beneficial.
- Analysis of heuristics for SDAC might improve our understanding.
■ Consequence: Let's study heuristics for SDAC in uncompiled setting.

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$

Relaxations

Costs in Relaxed States

Additive Heuristic Relaxed Planning Graph

Abstractions

Summary
References

Relaxation Heuristics

We know: Delete-relaxation heuristics informative in classical planning.

Question: Are they also informative in SDAC planning?

Relaxation Heuristics

- Assume we want to compute the additive heuristic $h^{\text {add }}$ in a task with state-dependent action costs.
- But what does an action a cost in a relaxed state s^{+}?
- And how to compute that cost?

Relaxed SAS ${ }^{+}$Tasks

Delete relaxation in SAS^{+}tasks works as follows:

- Operators are already in effect normal form.
- We do not need to impose a positive normal form, because all conditions are conjunctions of facts, and facts are just variable-value pairs and hence always positive.
\square Hence $a^{+}=a$ for any operator a, and $\Pi^{+}=\Pi$.
\square For simplicity, we identify relaxed states s^{+}with their on-sets on($\left.s^{+}\right)$.

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed

Additive Heuristic
Relaxed Planning Graph

- Then, a relaxed state s^{+}is a set of facts (v, d) with $v \in V$ and $d \in \mathscr{D}_{v}$ including at least one fact (v, d) for each $v \in V$ (but possibly more than one, which is what makes it a relaxed state).

Relaxed SAS ${ }^{+}$Tasks

- A relaxed operator a is applicable in a relaxed state s^{+}if all precondition facts of a are contained in s^{+}.
- Relaxed states accumulate facts reached so far.
- Applying a relaxed operator a to a relaxed state s^{+}adds to s^{+}those facts made true by a.

Example

Relaxed operator $a^{+}=\langle x=2, y:=1 \wedge z:=0\rangle$ is applicable in

Relaxed plans, dominance, monotonicity etc. as before. The above definition generalizes the one for propositional tasks.

Action Costs in Relaxed States

Background

Example

Assume s^{+}is the relaxed state with

$$
s^{+}=\{(x, 0),(x, 1),(y, 1),(y, 2),(z, 0)\} .
$$

What should action a with $\operatorname{cost}_{a}=x y^{2}+z+2$ cost in $s^{+} ?$

Compilation
Relaxations
Delete Relaxations in SAS
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Action Costs in Relaxed States

Idea: We should assume the cheapest way of applying o^{+}in $s^{+} \underset{\text { Z }}{\text { Z }}$ to guarantee admissibility of h^{+}.
(Allow at least the behavior of the unrelaxed setting at no higher cost.)

Background
Compilation
Relaxations
Delete Relaxations in SAS
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Action Costs in Relaxed States

 to guarantee admissibility of h^{+}.
(Allow at least the behavior of the unrelaxed setting at no higher cost.)

Example

Action Costs in Relaxed States

Definition

Let V be a set of FDR variables, $s: V \rightarrow \bigcup_{v \in V} \mathscr{D}_{V}$ an unrelaxed state over V, and $s^{+} \subseteq\left\{(v, d) \mid v \in V, d \in \mathscr{D}_{v}\right\}$ a relaxed state over V. We call s consistent with s^{+}if $\{(v, s(v)) \mid v \in V\} \subseteq s^{+}$.

Definition

Let $a \in O$ be an action with cost function cost_{a}, and s^{+}a relaxed state. Then the relaxed cost of a in s^{+}is defined as

Background
Compilation
Relaxations
Delete Relaxations in SAS
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning
Graph
Abstractions
Summary
References

$$
\operatorname{cost}_{a}\left(s^{+}\right)=\min _{s \in S \text { consistent with } s^{+}} \operatorname{cost}_{a}(s)
$$

(Question: How many states s are consistent with s^{+}?)

Action Costs in Relaxed States

Central question: Can we still do this minimization efficiently?
Answer: Yes, at least efficiently in the size of an EVMDD encoding costa.

Delete Relaxations in SAS
Costs in Relaxed States
Additive Heuristic

Cost Computation for Relaxed States

Example

Relaxed state $s^{+}=\{(x, 0),(x, 1),(y, 1),(y, 2),(z, 0)\}$.

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Cost Computation for Relaxed States

Example

Relaxed state $s^{+}=\{(x, 0),(x, 1),(y, 1),(y, 2),(z, 0)\}$.

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Cost Computation for Relaxed States

Example

Relaxed state $s^{+}=\{(x, 0),(x, 1),(y, 1),(y, 2),(z, 0)\}$.

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Cost Computation for Relaxed States

Example

Relaxed state $s^{+}=\{(x, 0),(x, 1),(y, 1),(y, 2),(z, 0)\}$.

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Cost Computation for Relaxed States

Example

Relaxed state $s^{+}=\{(x, 0),(x, 1),(y, 1),(y, 2),(z, 0)\}$.

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Cost Computation for Relaxed States

Example

Relaxed state $s^{+}=\{(x, 0),(x, 1),(y, 1),(y, 2),(z, 0)\}$.

$\operatorname{cost}_{a}\left(s^{+}\right)=2$

- Cost-minimizing s consistent with

$$
s^{+}: s(x)=s(z)=0, s(y) \in\{1,2\} .
$$

Background
Compilation
Relaxations
Delete Relaxation in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Cost Computation for Relaxed States

Background

Theorem

A top-sort traversal of the EVMDD for cost $_{\text {a }}$, adding edge weights and minimizing over incoming arcs consistent with s^{+} at all nodes, computes $\operatorname{cost}_{a}\left(s^{+}\right)$and takes time in the order of the size of the EVMDD.

Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary

Proof.

Homework?

Relaxation Heuristics

The following definition is equivalent to the RPG－based one．

Background
Compilation
Relaxations
Delete Relaxations in SAS
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Question：How to generalize $h^{\text {add }}$ to SDAC？

Relaxations with SDAC

Example

$$
\left.\begin{array}{cc}
a=\langle T, x=1\rangle & \operatorname{cost}_{a}=2-2 y \\
b=\langle T, y=1\rangle & \operatorname{cost}_{b}=1
\end{array}\right\} \begin{gathered}
s=\{x \mapsto 0, y \mapsto 0\} \\
h_{s}^{\text {add }}(y=1)=1 \\
h_{s}^{\text {add }}(x=1)=?
\end{gathered}
$$

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Relaxations with SDAC

Example

$$
\left.\begin{array}{cr}
a=\langle T, x=1\rangle & \operatorname{cost}_{a}=2-2 y \\
b=\langle T, y=1\rangle & \operatorname{cost}_{b}=1
\end{array}\right\}
$$

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Relaxations with SDAC

Example

$$
\left.\begin{array}{cr}
a=\langle\top, x=1\rangle & \operatorname{cost}_{a}=2-2 y \\
b=\langle\top, y=1\rangle & \operatorname{cost}_{b}=1
\end{array}\right\}
$$

Background
Compilation
Relaxations
Delete Relaxation in SAS
Costs in Relaxed States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Relaxations with SDAC

(Here, we need the assumption that no variable occurs both in the cost function and the precondition of the same action):

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Relaxations with SDAC

(Here, we need the assumption that no variable occurs both in the cost function and the precondition of the same action):

Background
Compilation
Relaxations
Delete Relaxations in SAS
Costs in Relaxed States
Additive Heuristic
S_{a} : set of partial states over variables in cost function
$\left|S_{a}\right|$ exponential in number of variables in cost function

Relaxations with SDAC

Theorem

Let Π be an SDAC planning task, let Π^{\prime} be an EVMDD-based action compilation of Π, and let s be a state of Π. Then the classical $h^{\text {add }}$ heuristic in Π^{\prime} gives the same value for $s \cup\{\sigma \mapsto 0\} \cup\left\{\alpha_{a} \mapsto 0 \mid a \in O\right\}$ as the generalization of $h^{\text {add }}$ to SDAC tasks defined above gives for s in Π.

Background
Compilation
Relaxations
Delete Relaxations in SAS
Costs in Relaxed States
Additive Heuristic Relaxed Planning Graph

Computing $h^{\text {add }}$ for SDAC:

- Option 1: Compute classical $h^{\text {add }}$ on compiled task.
- Option 2: Compute Cost $_{a}^{s}$ directly. How?
- Plug EVMDDs as subgraphs into RPG
- \rightsquigarrow efficient computation of $h^{\text {add }}$

RPG Compilation

Remark: We can use EVMDDs to compute C_{s}^{a} and hence the generalized additive heuristic directly, by embedding them into the relaxed planning task.

We just briefly show the example, without going into too much detail.

Idea: Augment EVMDD with input nodes representing $h^{\text {add }}$ values from the previous RPG layer.

Background
Compilation
Relaxations
Delete Relaxations in SAS
Costs in Relaxed States
Additive Heuristic

- Use augmented diagrams as RPG subgraphs.
- Allows efficient computation of $h^{\text {add }}$.

Option 2: RPG Compilation

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic Relaxed Planning Graph

Abstractions
Summary
References

Option 2: RPG Compilation

Background
Compilation
Relaxations

- variable nodes become V-nodes
- weights become
\wedge-nodes

Delete Relaxations

 in SAS ${ }^{+}$Costs in Relaxed States
Additive Heuristic Relaxed Planning Graph

Abstractions
Summary
References

Option 2: RPG Compilation

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic Relaxed Planning Graph

Abstractions
Summary
References

Option 2: RPG Compilation

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic Relaxed Planning Graph

Abstractions
Summary
References

Option 2: Computing Cost $_{a}^{s}$

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Option 2: Computing Cost $_{a}^{s}$

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic Relaxed Planning Graph

Abstractions
Summary
References

Option 2: Computing Cost $_{a}^{s}$

Evaluate nodes:

- $\wedge: \sum$ (parents) + weight
- V : \min (parents)

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic Relaxed Planning Graph

Abstractions
Summary
References

Option 2: Computing Cost $_{a}^{s}$

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic Relaxed Planning Graph

Abstractions
Summary
References

Option 2: Computing Cost $_{a}^{s}$

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed States
Additive Heuristic Relaxed Planning Graph

Abstractions
Summary
References

Option 2: Computing Cost $_{a}^{s}$

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$

Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Option 2: Computing Cost $_{a}^{s}$

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Option 2: Computing Cost $_{a}^{s}$

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Option 2: Computing Cost $_{a}^{s}$

Input

Background
Compilation
Relaxations
Delete Relaxations in SAS ${ }^{+}$
Costs in Relaxed
States
Additive Heuristic
Relaxed Planning Graph

Abstractions
Summary
References

Additive Heuristic

- Use above construction as subgraph of RPG in each layer, for each action (as operator subgraphs).
- Add AND nodes conjoining these subgraphs with operator precondition graphs.
- Link EVMDD outputs to next proposition layer.

Background
Compilation
Relaxations
Delete Relaxations in SAS
Costs in Relaxed States
Additive Heuristic
Relaxed Planning Graph

Theorem

Let Π be an SDAC planning task. Then the classical additive RPG evaluation of the RPG constructed using EVMDDs as above computes the generalized additive heuristic $h^{\text {add }}$ defined before.

Background
Compilation
Relaxations
Abstractions

Abstractions

Abstraction Heuristics for SDAC

Question: Why consider abstraction heuristics?

Answer:

Abstractions
Cartesian
Abstractions
CEGAR
Summary
admissibility
References

Abstraction Heuristics for SDAC

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

Abstraction Heuristics for SDAC

Question: What are the abstract action costs?

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

Abstraction Heuristics for SDAC

Question: What are the abstract action costs?
Answer: For admissibility, abstract cost of a should be

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

$$
\operatorname{cost}_{a}\left(s^{\mathrm{abs}}\right)=\min _{\substack{\text { concrete state } s \\ \text { abstracted to } s^{\text {abs }}}} \operatorname{cost}_{a}(s) .
$$

Abstraction Heuristics for SDAC

Background

Question: What are the abstract action costs?
Answer: For admissibility, abstract cost of a should be

$$
\operatorname{cost}_{a}\left(s^{\mathrm{abs}}\right)=\min _{\substack{\text { concrete state } s \\ \text { abstracted to s } s^{\text {as }}}} \operatorname{cost}_{a}(s) .
$$

Problem: exponentially many states in minimization
Aim: Compute $\operatorname{cost}_{a}\left(s^{\mathrm{abs}}\right)$ efficiently (given EVMDD for $\operatorname{cost}_{a}(s)$).

Cartesian Abstractions

We will see: possible if the abstraction is Cartesian or coarser.

Background
Compilation
Relaxations

Abstractions
Cartesian Abstractions

Cartesian Abstractions

We will see: possible if the abstraction is Cartesian or coarser.
(Includes projections and domain abstractions.)
Background
Compilation

Definition (Cartesian abstraction)

A set of states s^{abs} is Cartesian if it is of the form

$$
D_{1} \times \cdots \times D_{n}
$$

where $D_{i} \subseteq \mathscr{D}_{i}$ for all $i=1, \ldots, n$.
An abstraction is Cartesian if all abstract states are Cartesian sets.
[Seipp and Helmert, 2013]
Intuition: Variables are abstracted independently.
\rightsquigarrow exploit independence when computing abstract costs!

Cartesian Abstractions

Example (Cartesian abstraction)

Background
Cartesian abstraction over x, y
Compilation
Relaxations
Abstractions
Cartesian Abstractions

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y

Cost $x+y+1$
(edges consistent with $\left.s^{a b s}\right)$

Background
Compilation
Relaxations
Abstractions
Cartesian Abstractions CEGAR

Summary
References

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y

Cost $x+y+1$
(edges consistent with $\left.s^{a b s}\right)$

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y

Cost $x+y+1$

(edges consistent with s^{abs})

Background
Compilation
Relaxations
Abstractions
Cartesian Abstractions CEGAR

Summary
References

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y

Cost $x+y+1$

(edges consistent with s^{abs})

Background
Compilation
Relaxations
Abstractions
Cartesian Abstractions CEGAR

Summary
References

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y

Cost $x+y+1$

(edges consistent with s^{abs})

Background
Compilation
Relaxations
Abstractions
Cartesian Abstractions CEGAR

Summary
References

Cartesian Abstractions

Why does the topsort EVMDD traversal (cheapest path computation) correctly compute $\operatorname{cost}_{a}\left(s^{\mathrm{abs}}\right)$?
Short answer: The exact same thing as with relaxed states, because relaxed states are Cartesian sets!

Longer answer:

1 For each Cartesian state $s^{\text {abs }}$ and each variable v, each value $d \in \mathscr{D}_{v}$ is either consistent with $s^{\text {abs }}$ or not.
2 This implies: at all decision nodes associated with variable v, some outgoing edges are enabled, others are disabled. This is independent from all other decision nodes.
3 This allows local minimizations over linearly many edges instead of global minimization over exponentially many paths in the EVMDD when computing minimum costs.
\leadsto polynomial in EVMDD size!

Cartesian Abstractions
 Not Cartesian!

If abstraction not Cartesian: two variables can be

- independent in cost function (\rightsquigarrow compact EVMDD), but - dependent in abstraction.

Background
Compilation
Relaxations
Abstractions
Cartesian Abstractions

Cartesian Abstractions

Not Cartesian!

If abstraction not Cartesian: two variables can be
■ independent in cost function (\rightsquigarrow compact EVMDD), but

- dependent in abstraction.
\rightsquigarrow cannot consider independent parts of EVMDD separately.

Example (Non-Cartesian abstraction)

cost $: x+y+1, \operatorname{cost}\left(s^{\mathrm{abs}}\right)=2$, local minim.: $1 \rightsquigarrow$ underestimate!

Background
Compilation
Relaxations
Abstractions
Cartesian Abstractions CEGAR

Counterexample-Guided Abstraction Refinement

Wanted: principled way of computing Cartesian abstractions.
\rightsquigarrow Counterexample-Guided Abstraction Refinement (CEGAR)
[Clarke et al., 2000] [Seipp and Helmert, 2013]

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

CEGAR and Cartesian Abstractions

Assume the following:

- Initial abstraction is one-state abstraction with single abstract state $\mathscr{D}_{1} \times \cdots \times \mathscr{D}_{n}$.
\rightsquigarrow Cartesian abstraction
- Each refinement step takes one abstract state $s^{\mathrm{abs}}=D_{1} \times \cdots \times D_{n}$, one variable v_{i}, and splits $s^{\text {abs }}$ into
- $D_{1} \times \cdots \times D_{i-1} \times D_{i}^{\prime} \times D_{i+1} \times \cdots \times D_{n}$
- $D_{1} \times \cdots \times D_{i-1} \times D_{i}^{\prime \prime} \times D_{i+1} \times \cdots \times D_{n}$

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
cegar
Summary
References
such that $D_{i}^{\prime} \cap D_{i}^{\prime \prime}=\emptyset$ and $D_{i}^{\prime} \cup D_{i}^{\prime \prime}=D_{i}$. \leadsto still a Cartesian abstraction

So, inductively:
■ Initial abstraction is Cartesian.

- Each refinement step preserves being Cartesian.

■ All generated abstractions are Cartesian.

CEGAR and Cartesian Abstractions

Some questions:

- Q: When to split abstract states?

A: When first flaw is identified. (Details below.)
Cartesian

- Q: How to split abstract states?

A: So as to resolve that flaw. (Details below.)

CEGAR and Cartesian Abstractions

Some questions:

Background
Compilation

- Available resources (time, memory, abstraction size bound, ...) exhausted.
\rightsquigarrow Use current abstraction as basis for abstraction heuristic for concrete planning task (i. e., compute abstract goal distances, store in lookup table, ...).

CEGAR by Example

Example (one package, one truck)

Consider the following FDR planning task $\langle V, I, O, \gamma\rangle$:

- $V=\{t, p\}$ with
- $\mathscr{D}_{t}=\{L, R\}$
- $\mathscr{D}_{p}=\{L, T, R\}$
$\square=\{t \mapsto L, p \mapsto L\}$
- $O=\{$ pick-in $\mid i \in\{L, R\}\}$
$\cup\left\{d r o p-\right.$ in $\left._{i} \mid i \in\{L, R\}\right\}$
$\cup\left\{\right.$ move $\left._{i, j} \mid i, j \in\{L, R\}, i \neq j\right\}$, where
- pick-in ${ }_{i}=\langle t=i \wedge p=i, p:=T\rangle$
- drop-in $n_{i}=\langle t=i \wedge p=T, p:=i\rangle$
- move $_{i, j}=\langle t=i, t:=j\rangle$
- $\gamma=(p=R)$.

CEGAR by Example

Example (Ctd.)

Before we look at CEGAR applied to this task, here is the concrete transition system (just for reference):

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

CEGAR by Example

Example (Ctd.)

Refinement step 0 (initial abstraction):

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

Abstract plan: $\pi_{0}=\langle \rangle$
Flaw: $s_{0}=L L$ is not a goal state.

Consequence: Split abstract state $\{L, R\} \times\{L, T, R\}$ wrt. goal condition $\gamma=(p=R)$ into goal states and non-goal states.

CEGAR by Example

Example (Ctd.)

Refinement step 1:

Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

Abstract plan: $\pi_{1}=\left\langle d r o p-i n_{R}\right\rangle$
Flaw: Preconditions $(t=R)$ and $(p=T)$ of $d r o p-i n_{R}$ not satisfied in $s_{0}=L L$.
Consequence: Pick one of the unsatisfied preconditions, say $(t=R)$, and split abstract state $\{L, R\} \times\{L, T\}$ wrt. $(t=R)$.

CEGAR by Example

Example (Ctd.)

Refinement step 2:

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

Abstract plan: $\pi_{2}=\left\langle\right.$ move $_{L, R}$, drop-in $\left.{ }_{R}\right\rangle$
Flaw: Precondition $(p=T)$ of drop- $^{i n} n_{R}$ not satisfied in $s_{1}=R L$.

Consequence: Split abstract state $\{R\} \times\{L, T\}$ wrt. $(p=T)$.

CEGAR by Example

Example (Ctd.)

Refinement step 3:

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

Abstract plan: $\pi_{3}=\left\langle\right.$ move $_{L, R}$, drop-in $\left._{R}\right\rangle$
Flaw: Concrete and abstract paths diverge $(\{R\} \times\{L\}$ vs. $\{R\} \times\{T\}$).
Consequence: Regress from $\{R\} \times\{T\}$ through move ${ }_{L, R}$, obtain $\{L\} \times\{T\}$, split abstract state $\{L\} \times\{L, T\}$ accordingly.

CEGAR by Example

Example (Ctd.)

Refinement step 4:

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

Abstract plan: $\pi_{4}=\left\langle\right.$ pick-in ${ }_{L}$, move $_{L, R}$, drop-in $\left.n_{R}\right\rangle$
Flaw: None. π_{4} is concretizable!

Consequence: Concrete plan found! Return and terminate.

CEGAR: Flaws

CEGAR for unit-cost tasks. Three kinds of flaws:

- Abstract plan works in concrete transition system, but ends in non-goal state. (Step 0 in example.)

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References (Steps 1 and 2 in example.)

- Concrete and abstract paths diverge at some point, because abstract transition system is nondeterministic. (Step 3 in example.)

CEGAR: Flaw Resolution

Flaw 1: Abstract plan terminates in concrete non-goal state. Resolution: Split abstraction of last state s_{n} of concrete trace into (a) part containing s_{n}, but containing no concrete goal state, and (b) rest.

CEGAR: Flaw Resolution

Flaw 2: Abstract plan fails because some operator precondition is violated.

Resolution: Split abstraction of state s_{i-1} of concrete trace, where operator precondition χ is violated, into (a) part containing s_{i-1}, but no concrete state in which precondition χ is satisfied, and (b) rest.

CEGAR: Flaw Resolution

Flaw 3: Concrete and abstract paths diverge.
Resolution: Split abstraction of state s_{i-1} of concrete trace, after which paths diverge when applying operator o, into (a) part containing s_{i-1} where applying o always leads to the "wrong" abstract successor state, and (b), rest.

CEGAR: Cost-Mismatch Flaws

Remark: In tasks with state-dependent action costs, there is a fourth type of flaws, so-called cost-mismatch flaws.

Flaw 4: Action is more costly in concrete state than in abstract state.

Resolution: Split abstraction of violating concrete state into two parts that differ on the value of a variable that is relevant to the cost function of the operator in question, such that we have different cost values in the two parts.

CEGAR: Cost-Mismatch Flaws

Example (Cost-mismatch flaw)

$$
\begin{array}{ll}
a=\langle T, \quad x \wedge y\rangle, \operatorname{cost}_{a}=2 x+1 & s_{0}=10 \\
b=\langle\top, \neg x \wedge y\rangle, \operatorname{cost}_{b}=1 & s_{\star}=x \wedge y
\end{array}
$$

CEGAR: Cost-Mismatch Flaws

Example (Cost-mismatch flaw)

$$
\begin{array}{ll}
a=\langle T, \quad x \wedge y\rangle, \operatorname{cost}_{a}=2 x+1 & s_{0}=10 \\
b=\langle\top, \neg x \wedge y\rangle, \operatorname{cost}_{b}=1 & s_{\star}=x \wedge y
\end{array}
$$

Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

- Optimal abstract plan: $\langle a\rangle$ (abstract cost 1)

CEGAR: Cost-Mismatch Flaws

Example (Cost-mismatch flaw)

$$
\begin{array}{ll}
a=\langle T, \quad x \wedge y\rangle, \operatorname{cost}_{a}=2 x+1 & s_{0}=10 \\
b=\langle\top, \neg x \wedge y\rangle, \operatorname{cost}_{b}=1 & s_{\star}=x \wedge y
\end{array}
$$

Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

- Optimal abstract plan: $\langle a\rangle$ (abstract cost 1)
- This is also a concrete plan (concrete cost $3 \neq 1$)
\rightsquigarrow split $\{0,1\} \times\{0\}$

CEGAR: Cost-Mismatch Flaws

Example (Cost-mismatch flaw)

$$
\begin{array}{ll}
a=\langle T, \quad x \wedge y\rangle, \operatorname{cost}_{a}=2 x+1 & s_{0}=10 \\
b=\langle\top, \neg x \wedge y\rangle, \operatorname{cost}_{b}=1 & s_{\star}=x \wedge y
\end{array}
$$

Background
Compilation
Relaxations
Abstractions
Cartesian
Abstractions
CEGAR
Summary
References

- Optimal abstract plan: $\langle a\rangle$ (abstract cost 1)
- This is also a concrete plan (concrete cost $3 \neq 1$)
\rightsquigarrow split $\{0,1\} \times\{0\}$
- Cf. optimal concrete plan: $\langle b, a\rangle$ (concr. and abstr. cost 2)

Background
Compilation
Relaxations
Abstractions

Summary

SDAC Planning and EVMDDs

Conclusion

Summary:

- State-dependent actions costs practically relevant.
- EVMDDs exhibit and exploit structure in cost functions.
- Graph-based representations of arithmetic functions.
- Edge values express partial cost contributed by facts.

Background
Compilation
Relaxations
Abstractions
Summary
References

- Can be used to compile tasks with state-dependent costs to tasks with state-independent costs.
- Alternatively, can be embedded into the RPG to compute forward-cost heuristics directly.
- For $h^{\text {add }}$, both approaches give the same heuristic values.
- Abstraction heuristics can also be generalized to state-dependent action costs.

SDAC Planning and EVMDDs

Conclusion

Future Work and Work in Progress:

- Investigation of other delete-relaxation heuristics for tasks with state-dependent action costs.
- Investigation of static and dynamic EVMDD variable orders.
\square Application to cost partitioning, to planning with preferences, ...
- Better integration of SDAC in PDDL.
- Tool support.

■ Benchmarks.

Background
Compilation
Relaxations
Abstractions

References

SDAC Planning and EVMDDs

Ciardo and Siminiceanu, Using edge-valued decision diagrams for symbolic generation of shortest paths, in Proc. 4th Intl. Conference on Formal Methods in Computer-Aided Design (FMCAD 2002), pp. 256-273, 2002.

囦 Geißer, Keller, and Mattmüller, Delete relaxations for planning with state-dependent action costs, in Proc. 24th Intl. Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 1573-1579, 2015.
(ineißer, Keller, and Mattmüller, Abstractions for planning with state-dependent action costs, in Proc. 26th Intl. Conference on Automated Planning and Scheduling (ICAPS 2016), pp. 140-148, 2016.

