Principles of AI Planning
16. Complexity of nondeterministic planning
with full observability

Albert-Ludwigs-Universität Freiburg
Motivation

Comparison to deterministic planning

- The basic proof idea is very similar to the PSPACE-completeness proof for deterministic planning.
PSPACE-completeness proof for deterministic planning.
- The main difference is that we consider alternating Turing Machines (ATMs) instead of deterministic Turing
Machines (DTMs) in the reduction.
- Due to the similarity to the earlier proof, we first review some of the concepts introduced in the earlier lecture.

Alternating Turing Machines

Definition: Alternating Turing Machine
Alternating Turing Machine (ATM) $\left\langle\Sigma, \square, Q, q_{0}, I, \delta\right\rangle$:
1 input alphabet Σ and blank symbol $\square \notin \Sigma$

- alphabets always non-empty and finite
- tape alphabet $\Sigma_{\square}=\Sigma \cup\{\square\}$

2 finite set Q of internal states with initial state $q_{0} \in Q$
3 state labeling $/: Q \rightarrow\{\mathrm{Y}, \mathrm{N}, \exists, \forall\}$
accepting, rejecting, existential, universal states $Q_{Y}, Q_{N}, Q_{\exists}, Q_{\forall}$

- terminal states $Q_{\star}=Q_{Y} \cup Q_{N}$
- nonterminal states $Q^{\prime}=Q_{\exists} \cup Q_{\forall}$

4 transition relation $\delta \subseteq\left(Q^{\prime} \times \Sigma_{\square}\right) \times\left(Q \times \Sigma_{\square} \times\{-1,+1\}\right)$

January 16, 2019
B. Nebel, R. Mattmüller - Al Planning

6/27

Acceptance (space)

Let $c=(w, q, x)$ be a configuration of M.
$\square M$ accepts $c=(w, q, x)$ with $q \in Q_{Y}$ in space n iff $|w|+|x| \leq n$.

- M accepts $c=(w, q, x)$ with $q \in Q_{\exists}$ in space n iff M accepts some c^{\prime} with $c \vdash c^{\prime}$ in space n.
$\square M$ accepts $c=(w, q, x)$ with $q \in Q_{\forall}$ in space n iff M accepts all c^{\prime} with $c \vdash c^{\prime}$ in space n.

January 16, 2019
B. Nebel, R. Mattmüller - Al Planning
$10 / 27$

The power of alternation
eorem (Chandra et al. 1981)
$\mathrm{AP}=\mathrm{PSPACE}$
APSPACE $=$ EXP
AEXP = EXPSPACE
AEXPSPACE $=2-E X P$

The hierarchy of complexity classes

	\cdots
Complexity results	$=$

The strong planning problem

Question: Is there a strong plan for the task?

- We do not consider a nondeterministic analog of the bounded plan existence problem (PLANLEN).
- We will prove that StrongPLANEx is EXP-complete.
- We already know that the problem belongs to EXP, because we have presented a dynamic programming algorithm that generates strong plans in exponential time.
- We prove hardness for EXP by providing a generic reduction for alternating Turing Machines with polynomial space and use Chandra et al.'s theorem showing APSPACE = EXP.
- For a fixed polynomial p, given ATM M and input w, generate planning task which is solvable by a strong plan iff M accepts w in space $p(|w|)$.
- For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality).

Motivation
\square Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from.

- Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect.

January 16, 2019

Reduction: initial state		$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$
Let p be the space bound polynomial. Given ATM $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ and input $w_{1} \ldots w_{n}$, define relevant tape positions $X=\{1, \ldots, p(n)\}$.		2프문
		Motivation
		Review
Initial state formula		Complexity results
		The reducion
Specify a unique initial state.		The proof
Initially true:		Summary
$\square \text { state }_{q_{0}}$		
\square head $_{1}$		
\square content $_{i, w_{i}}$ for all $i \in\{1, \ldots, n\}$		
\square content $_{\text {i, }}$ for all $i \in X \backslash\{1, \ldots, n\}$		
Initially false:		
- all others		
January 16, 2019 B. Nebel, R. Mattmüller - Al Planning	20/27	

Reduction: goal

Let p be the space bound polynomial.
Given ATM $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ and input $w_{1} \ldots w_{n}$, define relevant tape positions $X=\{1, \ldots, p(n)\}$.
Goal
$V_{q \in Q_{Y}}$ state $_{q}$

Motivation

Reduction: operators

Let p be the space bound polynomial.
Given ATM $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ and input $w_{1} \ldots w_{n}$, define relevant tape positions $X=\{1, \ldots, p(n)\}$.

Operators
For $q, q^{\prime} \in Q, a, a^{\prime} \in \Sigma_{\square}, \Delta \in\{-1,+1\}, i \in X$, define
$\square \operatorname{pre}_{q, a, i}=$ state $_{q} \wedge$ head $_{i} \wedge$ content $_{i, a}$
\square eff $_{q, a, q^{\prime}, a^{\prime}, \Delta, i}=\neg$ state $_{q} \wedge \neg$ head $_{i} \wedge \neg$ content $_{i, a}$ \wedge state $_{q^{\prime}} \wedge$ head $_{i+\Delta} \wedge$ content $_{i, a^{\prime}}$

- If $q=q^{\prime}$, omit the effects \neg state $_{q}$ and state $_{q^{\prime}}$. - If $a=a^{\prime}$, omit the effects \neg content $_{i, a}$ and content ${ }_{i, a^{\prime}}$.

January 16, 2019
B. Nebel, R. Mattmüller - Al Planning
$22 / 27$

Summary
Nondeterministic planning is harder than deterministic
planning.
In particular, it is EXP-complete in the fully observable
case, compared to the PSPACE-completeness of
deterministic planning.
The hardness result already holds if the operators and
there is a unique initial state.
The introduction of nondeterministic effects corresponds
to the introduction of alternation in Turing Machines.
Later, we will see that restricted observability has an even
more dramatic effect on the complexity of the planning
problem.

