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Overview

Similar to the earlier analysis of deterministic planning, we
will now study the computational complexity of
nondeterministic planning with full observability.
We consider the case of strong planning.
The results for strong cyclic planning are identical.

As usual, the main motivation for such a study is to determine
the limit of what is possible algorithmically: Should we try to
develop a polynomial algorithm?
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Comparison to deterministic planning

The basic proof idea is very similar to the
PSPACE-completeness proof for deterministic planning.
The main difference is that we consider alternating Turing
Machines (ATMs) instead of deterministic Turing
Machines (DTMs) in the reduction.
Due to the similarity to the earlier proof, we first review
some of the concepts introduced in the earlier lecture.
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Alternating Turing Machines

Definition: Alternating Turing Machine
Alternating Turing Machine (ATM) 〈Σ,�,Q,q0, l,δ 〉:

1 input alphabet Σ and blank symbol � /∈ Σ
alphabets always non-empty and finite
tape alphabet Σ� = Σ∪{�}

2 finite set Q of internal states with initial state q0 ∈Q
3 state labeling l : Q→{Y,N,∃,∀}

accepting, rejecting, existential, universal states
QY, QN, Q∃, Q∀
terminal states Q? = QY∪QN
nonterminal states Q′ = Q∃∪Q∀

4 transition relation δ ⊆ (Q′×Σ�)× (Q×Σ�×{−1,+1})
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Turing Machine configurations

Let M = 〈Σ,�,Q,q0, l,δ 〉 be an ATM.

Definition: Configuration
A configuration of M is a triple (w,q,x) ∈ Σ∗�×Q×Σ+

�.
w: tape contents before tape head
q: current state
x: tape contents after and including tape head
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Turing Machine transitions

Let M = 〈Σ,�,Q,q0, l,δ 〉 be an ATM.

Definition: Yields relation
A configuration c of M yields a configuration c′ of M,
in symbols c ` c′, as defined by the following rules,
where a,a′,b ∈ Σ�, w,x ∈ Σ∗�, q,q′ ∈Q and
((q,a), (q′,a′,∆)) ∈ δ :

(w,q,ax) ` (wa′,q′,x) if ∆ = +1, |x| ≥ 1
(w,q,a) ` (wa′,q′,�) if ∆ = +1

(wb,q,ax) ` (w,q′,ba′x) if ∆ =−1
(ε,q,ax) ` (ε,q′,�a′x) if ∆ =−1
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Acceptance (space)

Let M = 〈Σ,�,Q,q0, l,δ 〉 be an ATM.

Definition: Acceptance (space)
Let c = (w,q,x) be a configuration of M.

M accepts c = (w,q,x) with q ∈QY in space n
iff |w|+ |x| ≤ n.
M accepts c = (w,q,x) with q ∈Q∃ in space n
iff M accepts some c′ with c ` c′ in space n.
M accepts c = (w,q,x) with q ∈Q∀ in space n
iff M accepts all c′ with c ` c′ in space n.
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Accepting words and languages

Let M = 〈Σ,�,Q,q0, l,δ 〉 be an ATM.

Definition: Accepting words
M accepts the word w ∈ Σ∗ in space n ∈ N0
iff M accepts (ε,q0,w) in space n.

Special case: M accepts ε in time (space) n ∈ N0
iff M accepts (ε,q0,�) in time (space) n.

Definition: Accepting languages
Let f : N0→ N0.
M accepts the language L⊆ Σ∗ in space f
iff M accepts each word w ∈ L in space f (|w|),
and M does not accept any word w /∈ L.
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Alternating space complexity

Definition: ASPACE, APSPACE
Let f : N0→ N0.
Complexity class ASPACE(f ) contains all languages accepted
in space f by some ATM.

Let P be the set of polynomials p : N0→ N0.

APSPACE :=
⋃
p∈P

ASPACE(p)
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Standard complexity classes relationships

Theorem
P⊆ NP ⊆AP

PSPACE⊆ NPSPACE ⊆APSPACE
EXP⊆ NEXP ⊆AEXP

EXPSPACE⊆NEXPSPACE⊆AEXPSPACE
2-EXP⊆ . . .
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The power of alternation

Theorem (Chandra et al. 1981)
AP = PSPACE

APSPACE = EXP
AEXP = EXPSPACE

AEXPSPACE = 2-EXP

January 16, 2019 B. Nebel, R. Mattmüller – AI Planning 13 / 27

Motivation

Review
ATMs

Complexity classes

Complexity
results

Summary

The hierarchy of complexity classes

2-EXPSPACE= 2-NEXPSPACE

2-NEXP

2-EXP= AEXPSPACE

EXPSPACE= NEXPSPACE= AEXP

NEXP

EXP= APSPACE

PSPACE = NPSPACE = AP

NP

P

6=

6=
6=

6=
6=

6=
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The strong planning problem

StrongPlanEx (strong plan existence)
Given: nondeterministic planning task 〈A, I,O,G,V〉

with full observability (A = V )
Question: Is there a strong plan for the task?

We do not consider a nondeterministic analog of the
bounded plan existence problem (PlanLen).
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Proof idea

We will prove that StrongPlanEx is EXP-complete.
We already know that the problem belongs to EXP,
because we have presented a dynamic programming
algorithm that generates strong plans in exponential time.
We prove hardness for EXP by providing a generic
reduction for alternating Turing Machines with polynomial
space and use Chandra et al.’s theorem showing
APSPACE = EXP.
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Reduction
Overview

For a fixed polynomial p, given ATM M and input w,
generate planning task which is solvable by a strong plan
iff M accepts w in space p(|w|).
For simplicity, restrict to ATMs which
never move to the left of the initial head position
(no loss of generality).
Existential states of the ATM are modeled by states of the
planning task where there are several applicable
operators to choose from.
Universal states of the ATM are modeled by states of the
planning task where there is a single applicable operator
with a nondeterministic effect.
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Reduction: state variables

Let p be the space-bound polynomial.
Given ATM 〈Σ,�,Q,q0, l,δ 〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . ,p(n)}.

State variables
stateq for all q ∈Q
headi for all i ∈ X ∪{0,p(n) +1}
contenti,a for all i ∈ X , a ∈ Σ�
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Reduction: initial state

Let p be the space bound polynomial.
Given ATM 〈Σ,�,Q,q0, l,δ 〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . ,p(n)}.

Initial state formula
Specify a unique initial state.

Initially true:
stateq0
head1
contenti,wi for all i ∈ {1, . . . ,n}
contenti,� for all i ∈ X \{1, . . . ,n}

Initially false:
all others
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Reduction: goal

Let p be the space bound polynomial.
Given ATM 〈Σ,�,Q,q0, l,δ 〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . ,p(n)}.

Goal∨
q∈QY stateq

Without loss of generality, we can assume that QY is a
singleton set so that we do not need a disjunctive goal.
This way, the hardness result also holds for a restricted
class of planning tasks (“nondeterministic STRIPS”).
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Reduction: operators

Let p be the space bound polynomial.
Given ATM 〈Σ,�,Q,q0, l,δ 〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . ,p(n)}.

Operators
For q,q′ ∈Q, a,a′ ∈ Σ�, ∆ ∈ {−1,+1}, i ∈ X , define

preq,a,i = stateq ∧headi ∧contenti,a
effq,a,q′,a′,∆,i = ¬stateq ∧¬headi ∧¬contenti,a
effq,a,q′,a′,i =∧stateq′ ∧headi+∆ ∧contenti,a′

If q = q′, omit the effects ¬stateq and stateq′ .
If a = a′, omit the effects ¬contenti,a and contenti,a′ .
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Reduction: operators (continued)

Let p be the space bound polynomial.
Given ATM 〈Σ,�,Q,q0, l,δ 〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . ,p(n)}.

Operators (ctd.)
For existential states q ∈Q∃, a ∈ Σ�, i ∈ X :
Let (q′j ,a′j ,∆j)j∈{1,...,k} be those triples with
((q,a), (q′j ,a′j ,∆j)) ∈ δ .

For each j ∈ {1, . . . ,k}, introduce one operator:
precondition: preq,a,i
effect: effq,a,q′j ,a′j ,∆j ,i
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Reduction: operators (continued)

Let p be the space bound polynomial.
Given ATM 〈Σ,�,Q,q0, l,δ 〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . ,p(n)}.

Operators (ctd.)
For universal states q ∈Q∀, a ∈ Σ�, i ∈ X :
Let (q′j ,a′j ,∆j)j∈{1,...,k} be those triples with
((q,a), (q′j ,a′j ,∆j)) ∈ δ .

Introduce only one operator:
precondition: preq,a,i
effect: effq,a,q′1,a′1,∆1,i | . . . |effq,a,q′k ,a′k ,∆k ,i
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EXP-completeness of strong planning
with full observability

Theorem (Rintanen)
StrongPlanEx is EXP-complete.
This is true even if we only allow operators in unary
nondeterminism normal form where all deterministic
sub-effects and the goal satisfy the STRIPS restriction and if
we require a deterministic initial state.

Proof.
Membership in EXP has been shown by providing
exponential-time algorithms that generate strong plans (and
decide if one exists as a side effect).
Hardness follows from the previous generic reduction for ATMs
with polynomial space bound and Chandra et al.’s
theorem.
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Summary

Nondeterministic planning is harder than deterministic
planning.
In particular, it is EXP-complete in the fully observable
case, compared to the PSPACE-completeness of
deterministic planning.
The hardness result already holds if the operators and
goals satisfy some fairly strong syntactic restrictions and
there is a unique initial state.
The introduction of nondeterministic effects corresponds
to the introduction of alternation in Turing Machines.
Later, we will see that restricted observability has an even
more dramatic effect on the complexity of the planning
problem.

January 16, 2019 B. Nebel, R. Mattmüller – AI Planning 27 / 27


	Motivation
	Review
	Alternating Turing Machines
	Complexity classes

	Complexity results
	The strong planning problem
	APSPACE reduction
	EXP-completeness proof

	Summary

