Principles of AI Planning 15. Strong nondeterministic planning

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller January 11, 2019

Summary

In this chapter, we will consider the simplest case of nondeterministic planning by restricting attention to strong plans.

Concepts

Strong plans Images Weak preimages Strong preimages

Algorithms

Summary

Concepts

Recall the definition of strong plans:

Definition (strong plan)

Let *S* be the set of states of a planning task Π . Then a strong plan for Π is a function $\pi : S_{\pi} \to O$ for some subset $S_{\pi} \subseteq S$ such that

- $\pi(s)$ is applicable in s for all $s \in S_{\pi}$,
- $\blacksquare S_{\pi}(s_0) \subseteq S_{\pi} \cup S_{\star} \ (\pi \text{ is closed}),$

• $S_{\pi}(s') \cap S_{\star}
eq \emptyset$ for all $s' \in S_{\pi}(s_0)$ (π is proper), and

there is no state $s' \in S_{\pi}(s_0)$ such that s' is reachable from s' following π in a strictly positive number of steps (π is acyclic).

Concepts

Strong plans

nages

Strong preimages

Algorithms

Concepts

Strong plans

Images

Weak preimages

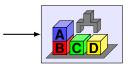
Algorithms

.

Execution of a strong plan

- Determine the current state *s*.
- If *s* is a goal state then terminate.
- 3 Execute action $\pi(s)$.
- 4 Repeat from first step.

Concepts

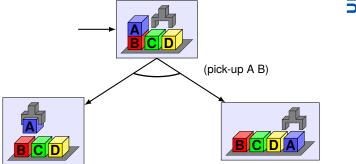

Strong plans

Images

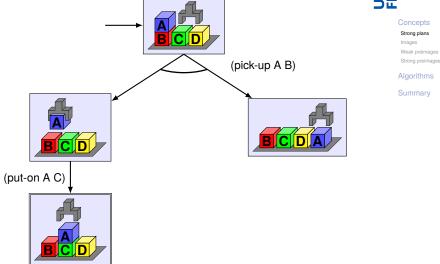
Weak preimages

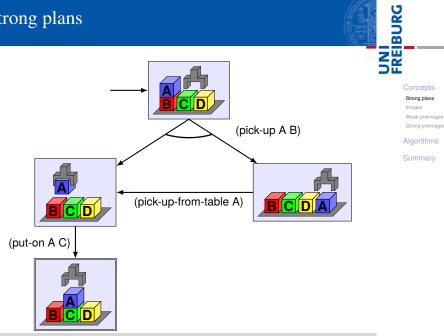
Strong preimages

Algorithms

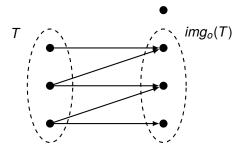


Concepts Strong plans


Algorithms Summary


Images Weak preimages Strong preimages

January 11, 2019



Image

The image of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.

UNI FREIBURG

> Strong plans Images

> > weak preimages Strong preimages

Algorithms

Concepts

Strong plans

Images

Weak preimages Strong preimages

Algorithms

Summary

Definition (image of a state)

 $\mathit{img}_o(s) = \{s' \in S | s \xrightarrow{o} s'\} = app_o(s)$

Definition (image of a set of states)

 $img_o(T) = \bigcup_{s \in T} img_o(s)$

Weak preimages

Weak preimage

The weak preimage of a set T of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o.

wpreimg_o(T) , T

UNI FREIBURG

Concept

Strong plans

Weak preimages

Algorithms

Weak preimages

Concepts

Strong plans

Images

Weak preimages

Strong preimages

Algorithms

Summary

Definition (weak preimage of a state)

wpreimg $_o(s') = \{s \in S | s \xrightarrow{o} s'\}$

Definition (weak preimage of a set of states)

wpreim $g_o(T) = \bigcup_{s \in T} wpreim g_o(s)$.

Strong preimages

Strong preimage

The strong preimage of a set T of states with respect to an operator o is the set of those states from which a state in T is always reached when executing o.

spreimg_o(T) , T

Concept

Strong plans

Weak preimage

Strong preimages

Algorithms

Strong preimages

Concepts

Strong plans

Images

Weak preimages

Strong preimages

Algorithms

Summary

Definition (strong preimage of a set of states)

$spreimg_o(T) = \{ s \in S \mid \exists s' \in T : s \xrightarrow{o} s' \land img_o(s) \subseteq T \}$

Concepts

Algorithms

Regression

Summary

Algorithms

January 11, 2019

Algorithms for strong planning

Dynamic programming (backward) Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.

- 1 Zero actions needed for goal states.
- If states with *i* actions to goals are known, states with $\leq i + 1$ actions to goals can be easily identified.

Automatic reuse of plan suffixes already found.

2 Heuristic search (forward)

Strong planning can be viewed as AND/OR graph search.

OR nodes: Choice between operators

AND nodes: Choice between effects

Heuristic AND/OR search algorithms:

AO*, Proof Number Search, ...

Concepts

Algorithms

Regression

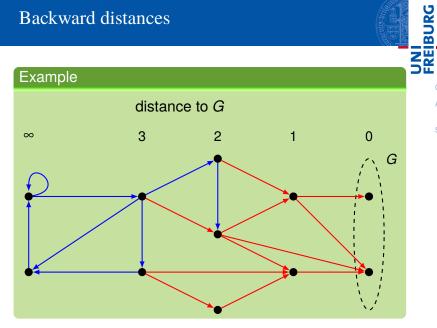
Dynamic programming

Planning by dynamic programming

If for all successors of state *s* with respect to operator *o* a plan exists, assign operator *o* to *s*.

- Base case i = 0: In goal states there is nothing to do.
- Inductive case $i \ge 1$: If $\pi(s)$ is still undefined and there is $o \in O$ such that for all $s' \in img_o(s)$, the state s' is a goal state or $\pi(s')$ was assigned in an earlier iteration, then assign $\pi(s) = o$.

Backward distances


If *s* is assigned a value on iteration $i \ge 1$, then the backward distance of *s* is *i*. The dynamic programming algorithm essentially computes the backward distances of states.

Concepts Algorithms Regression

Summary

January 11, 2019

Backward distances

Concepts Algorithms Regression

Backward distances

Definition (backward distance sets)

Let *G* be a set of states and *O* a set of operators. The backward distance sets D_i^{bwd} for *G* and *O* consist of those states for which there is a guarantee of reaching a state in *G* with at most *i* operator applications using operators in *O*:

$$D_0^{bwd} := G$$
$$D_i^{bwd} := D_{i-1}^{bwd} \cup \bigcup_{o \in O} spreimg_o(D_{i-1}^{bwd}) \text{ for all } i \ge 1$$

Concepts Algorithms Regression

Backward distances

Definition (backward distance)

Let *G* be a set of states and *O* a set of operators, and let $D_0^{bwd}, D_1^{bwd}, \ldots$ be the backward distance sets for *G* and *O*. Then the backward distance of a state *s* for *G* and *O* is

$$\delta^{bwd}_G(s) = \min\{i \in \mathbb{N} \, | \, s \in D^{bwd}_i\}$$

(where $\min \emptyset = \infty$).

Concepts Algorithms

Regression

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a nondeterministic planning task with state set *S* and goal states *S*_{*}.

Extraction of a strong plan from distance sets

- Let $S' \subseteq S$ be those states having a finite backward distance for $G = S_*$ and O.
- 2 Let $s \in S'$ be a state with distance $i = \delta_G^{bwd}(s) \ge 1$.
- 3 Assign to π(s) any operator o ∈ O such that img_o(s) ⊆ D^{bwd}_{i-1}. Hence o decreases the backward distance by at least one.

Then π is a strong plan for \mathscr{T} iff $I \in S'$.

Question: What is the worst-case runtime of the algorithm?

January 11, 2019

Concepts Algorithms Regression

Concepts

Algorithms

Summary

Summary

- We have considered the special case of nondeterministic planning where
 - planning tasks are fully observable and
 - we are interested in strong plans.
- We have introduced important concepts also relevant to other variants of nondeterministic planning such as
 - images and
 - weak and strong preimages.
- We have discussed one basic classes of algorithms: backward induction by dynamic programming.

Concepts Algorithms