Principles of AI Planning

15. Strong nondeterministic planning

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller January 11, 2019

3 / 21

Concepts

Strong plans

Weak preimage:

Algorithms Summary

Concepts

Strong planning

Algorithms

In this chapter, we will consider the simplest case of nondeterministic planning by restricting attention to strong plans.

January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

2/21

Strong plans

Recall the definition of strong plans:

Definition (strong plan)

Let S be the set of states of a planning task Π . Then a strong plan for Π is a function $\pi: S_{\pi} \to O$ for some subset $S_{\pi} \subseteq S$ such that

- \blacksquare $\pi(s)$ is applicable in s for all $s \in S_{\pi}$,
- \blacksquare $S_{\pi}(s_0) \subseteq S_{\pi} \cup S_{\star}$ (π is closed),
- \blacksquare $S_{\pi}(s') \cap S_{\star} \neq \emptyset$ for all $s' \in S_{\pi}(s_0)$ (π is proper), and
- lacksquare there is no state $s' \in S_{\pi}(s_0)$ such that s' is reachable from s' following π in a strictly positive number of steps (π is acyclic).

January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

Summary

Strong plans

4/21

B. Nebel, R. Mattmüller - Al Planning

Strong plans

UNI FREBURG

Concept

Strong plans

Weak preimages Strong preimages

Algorithms

Summary

Execution of a strong plan

- Determine the current state *s*.
- If *s* is a goal state then terminate.
- \blacksquare Execute action $\pi(s)$.
- 4 Repeat from first step.

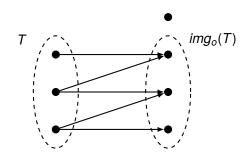
January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

5/21

Strong plans Concepts Strong plans (pick-up A B) (pick-up-from-table A) (put-on A C) January 11, 2019 B. Nebel, B. Mattmüller – Al Planning 6/21

Images


UNI FREIBURG

7 / 21

Image

January 11, 2019

The image of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.

B. Nebel, R. Mattmüller - Al Planning

ncepts

Strong plans Images Weak preimages Strong preimage

Algorithms
Summary

Definition (image of a state)

$$img_o(s) = \{s' \in S | s \xrightarrow{o} s'\} = app_o(s)$$

Definition (image of a set of states)

$$img_o(T) = \bigcup_{s \in T} img_o(s)$$

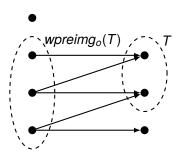
January 11, 2019

Images

B. Nebel, R. Mattmüller - Al Planning

Concepts

Strong plans Images Weak preimages


Algorithms

Summary

Weak preimages

Weak preimage

The weak preimage of a set *T* of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o.

January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

9/21

11/21

FREI

Strong plans

Weak preimages

Algorithms

Weak preimages

Concepts

Weak preimages

Algorithms

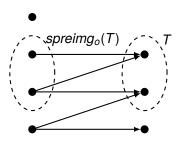
Definition (weak preimage of a state)

 $wpreimg_o(s') = \{s \in S | s \xrightarrow{o} s'\}$

Definition (weak preimage of a set of states)

 $wpreimg_o(T) = \bigcup_{s \in T} wpreimg_o(s).$

January 11, 2019


B. Nebel, R. Mattmüller - Al Planning

10/21

Strong preimages

Strong preimage

The strong preimage of a set *T* of states with respect to an operator o is the set of those states from which a state in T is always reached when executing o.

Strong plans Weak preimage:

UNI FREIBURG

Strong preimage: Algorithms

Summary

Strong preimages

12 / 21

Concepts Strong plans Weak preimages

Algorithms

Definition (strong preimage of a set of states)

 $spreimg_o(T) = \{ s \in S \mid \exists s' \in T : s \xrightarrow{o} s' \land img_o(s) \subseteq T \}$

January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

Summary

Algorithms

Summary

Algorithms

Algorithms

January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

13 / 21

Algorithms for strong planning

Algorithms

Dynamic programming (backward)

Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.

Zero actions needed for goal states.

2 If states with *i* actions to goals are known, states with $\leq i + 1$ actions to goals can be easily identified.

Automatic reuse of plan suffixes already found.

2 Heuristic search (forward)

Strong planning can be viewed as AND/OR graph search.

OR nodes: Choice between operators AND nodes: Choice between effects Heuristic AND/OR search algorithms:

AO*, Proof Number Search, ...

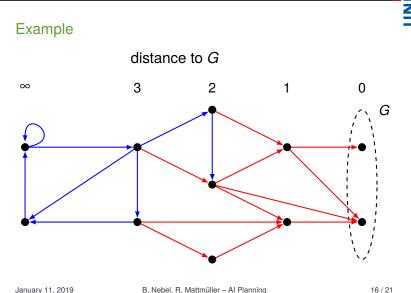
January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

14 / 21

Dynamic programming

Planning by dynamic programming


If for all successors of state s with respect to operator o a plan exists, assign operator o to s.

- Base case i = 0: In goal states there is nothing to do.
- Inductive case i > 1: If $\pi(s)$ is still undefined and there is $o \in O$ such that for all $s' \in img_o(s)$, the state s' is a goal state or $\pi(s')$ was assigned in an earlier iteration, then assign $\pi(s) = o$.

Backward distances

January 11, 2019

If s is assigned a value on iteration i > 1, then the backward distance of *s* is *i*. The dynamic programming algorithm essentially computes the backward distances of states.

Backward distances

Summary

B. Nebel, R. Mattmüller - Al Planning

Backward distances

Concepts

Summary

Definition (backward distance sets)

Let G be a set of states and O a set of operators. The backward distance sets D_i^{bwd} for G and O consist of those states for which there is a guarantee of reaching a state in G with at most i operator applications using operators in O:

$$D_0^{bwd} := G$$

$$D_i^{bwd} := D_{i-1}^{bwd} \cup \bigcup_{o \in O} spreimg_o(D_{i-1}^{bwd}) \text{ for all } i \ge 1$$

January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

17 / 21

Backward distances

Concepts

Algorithms
Regression
Summary

Definition (backward distance)

Let G be a set of states and O a set of operators, and let $D_0^{bwd}, D_1^{bwd}, \dots$ be the backward distance sets for G and O. Then the backward distance of a state s for G and O is

$$\delta_G^{bwd}(s) = \min\{i \in \mathbb{N} \,|\, s \in D_i^{bwd}\}$$

(where $\min \emptyset = \infty$).

January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

18 / 21

Strong plans based on distances

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a nondeterministic planning task with state set S and goal states S_* .

Extraction of a strong plan from distance sets

- Let $S' \subseteq S$ be those states having a finite backward distance for $G = S_*$ and O.
- Let $s \in S'$ be a state with distance $i = \delta_G^{bwd}(s) \ge 1$.
- assign to $\pi(s)$ any operator $o \in O$ such that $img_o(s) \subseteq D_{i-1}^{bwd}$. Hence o decreases the backward distance by at least one.

Then π is a strong plan for \mathscr{T} iff $I \in S'$.

Question: What is the worst-case runtime of the algorithm?

Concepts

Algorithms

Summa

Summary

Summary

Concepts

Summary

January 11, 2019 B. Nebel, R. Mattmüller – Al Planning

19 / 21

January 11, 2019

B. Nebel, R. Mattmüller - Al Planning

Summary

Concepts

- We have considered the special case of nondeterministic planning where
- Algorithms
 Summary

- planning tasks are fully observable and
- we are interested in strong plans.
- We have introduced important concepts also relevant to other variants of nondeterministic planning such as
 - images and
 - weak and strong preimages.
- We have discussed one basic classes of algorithms: backward induction by dynamic programming.

January 11, 2019

B. Nebel, R. Mattmüller - Al Planning