Principles of AI Planning
13. Computational complexity of classical planning

Albert-Ludwigs-Universität Freiburg

Motivation

Bernhard Nebel and Robert Mattmüller
December 21, 2018

How hard is planning?	
	2丏
Motivation	
	Background
We have seen that planning can be done in time	
polynomial in the size of the transition system.	
- However, we have not seen algorithms which are	
\rightsquigarrow What is the precise computational complexity of the planning problem?	

Why computational complexity?

- understand the problem better
- know what is not possible
\square get a licence for using heuristic search methods (or other methods to solve NP-hard problems)
\square find interesting subproblems that are easier to solve
\square distinguish essential features from syntactic sugar
\square Is STRIPS planning easier than general planning?
- Is planning for FDR tasks harder than for propositional tasks?

| | |
| :--- | :--- | :--- |
| Background | |

Nondeterministic Turing machines

Definition (nondeterministic Turing machine)
A nondeterministic Turing machine (NTM) is a 6-tuple
$\left\langle\Sigma, \square, Q, q_{0}, q_{\mathrm{Y}}, \delta\right\rangle$ with the following components:
■ input alphabet Σ and blank symbol $\square \notin \Sigma$
\square alphabets always nonempty and finite

$$
\square \text { tape alphabet } \Sigma_{\square}=\Sigma \cup\{\square\}
$$

finite set Q of internal states with initial state $q_{0} \in Q$ and accepting state $q_{Y} \in Q$

- nonterminal states $Q^{\prime}:=Q \backslash\left\{q_{\mathrm{Y}}\right\}$

■ transition relation $\delta \subseteq\left(Q^{\prime} \times \Sigma_{\square}\right) \times\left(Q \times \Sigma_{\square} \times\{-1,+1\}\right)$

December 21, 2018
B. Nebel, R. Mattmüller - Al Planning

Turing machine configurations

Background

Turing machine transitions

Definition (yields relation)
Motivation
Let $M=\left\langle\Sigma, \square, Q, q_{0}, q_{Y}, \delta\right\rangle$ be an NTM.
A configuration c of M yields a configuration c^{\prime} of M,
in symbols $c \vdash c^{\prime}$, as defined by the following rules,
where $a, a^{\prime}, b \in \Sigma_{\square}, w, x \in \Sigma_{\square}^{*}, q, q^{\prime} \in Q$ and
$\left\langle\langle q, a\rangle,\left\langle q^{\prime}, a^{\prime}, \Delta\right\rangle\right\rangle \in \delta:$

$$
\begin{aligned}
&\langle w, q, a x\rangle \vdash\left\langle w a^{\prime}, q^{\prime}, x\right\rangle \\
& \text { if } \Delta=+1,|x| \geq 1 \\
&\langle w, q, a\rangle \vdash\left\langle w a^{\prime}, q^{\prime}, \square\right\rangle \\
& \text { if } \Delta=+1 \\
&\langle w b, q, a x\rangle \vdash\left\langle w, q^{\prime}, b a^{\prime} x\right\rangle \\
& \text { if } \Delta=-1 \\
&\langle\varepsilon, q, a x\rangle \vdash\left\langle\varepsilon, q^{\prime}, \square a^{\prime} x\right\rangle \\
& \text { if } \Delta=-1
\end{aligned}
$$

December 21, 2018

Definition (accepting configuration, space)
Let $M=\left\langle\Sigma, \square, Q, q_{0}, q_{\mathrm{Y}}, \delta\right\rangle$ be an NTM,
let $c=\langle w, q, x\rangle$ be a configuration of M, and let $n \in \mathbb{N}_{0}$.
■ If $q=q_{Y}$ and $|w|+|x| \leq n, M$ accepts c in space n.
■ If $q \neq q_{Y}$ and M accepts some c^{\prime} with $c \vdash c^{\prime}$ in space n, then M accepts c in space n.

Time and space complexity classes

Definition (DTIME, NTIME, DSPACE, NSPACE)
Let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$.
Complexity class DTIME (f) contains all languages accepted in time $O(f)$ by some DTM.
Complexity class NTIME (f) contains all languages accepted in time $O(f)$ by some NTM.
Complexity class DSPACE (f) contains all languages accepted in space $O(f)$ by some DTM.
Complexity class NSPACE (f) contains all languages accepted in space $O(f)$ by some NTM.
M accepts the language $L \subseteq \Sigma^{*}$ in time (space) f
iff M accepts each word $w \in L$ in time (space) $f(|w|)$,
and M does not accept any word $w \notin L$ (in any time/space).

Polynomial time and space classes			-
			2"쓴
			Motivation
Let \mathscr{P} be the set of polynomials $p: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ whose coefficients are natural numbers.			Backround
			compony
Definition (P, NP, PSPACE, NPSPACE)			cen
	DTIME(p)		comple
$\begin{aligned} \mathrm{NP} & =\bigcup_{p \in \mathscr{P}} \operatorname{NTIME}(p) \\ \text { PSPACE } & =\bigcup_{p \in \mathscr{P}} \operatorname{DSPACE}(p) \\ \operatorname{NPSPACE} & =\bigcup_{p \in \mathscr{P}} \operatorname{NSPACE}(p) \end{aligned}$			Summay

Polynomial complexity class relationships

Theorem (complexity class hierarchy)
$P \subseteq N P \subseteq$ PSPACE $=$ NPSPACE
Proof.
$P \subseteq$ NP and PSPACE \subseteq NPSPACE is obvious because deterministic Turing machines are a special case of nondeterministic ones.
$N P \subseteq$ NPSPACE holds because a Turing machine can only visit polynomially many tape cells within polynomial time.
PSPACE = NPSPACE is a special case of a classical result known as Savitch's theorem (Savitch 1970).

The propositional planning problem

Definition (plan existence)
Plan existence vs. bounded plan existence

The propositional plan existence problem (PLANEx)
is the following decision problem:
Given: Planning task Π
Question: Is there a plan for Π ?
\rightsquigarrow decision problem analogue of satisficing planning
Definition (bounded plan existence)
Motivation Background

The propositional bounded plan existence problem (PLANLEN)
is the following decision problem:
Given: \quad Planning task Π, length bound $K \in \mathbb{N}_{0}$
Question: Is there a plan for Π of length at most K ?
\rightsquigarrow decision problem analogue of optimal planning
December 21, 2018
B. Nebel, R. Mattmüller - AI Planning

17/29

Theorem (reduction from PlanEx to PlanLen)
PlanEx \leq_{p} PlanLen
Proof.
A propositional planning task with n state variables has a plan iff it has a plan of length at most $2^{n}-1$.
\rightsquigarrow map instance Π of PLANEx to instance $\left\langle\Pi, 2^{n}-1\right\rangle$ of
PLANLEN, where n is the number of n state variables of Π
\rightsquigarrow polynomial reduction

December 21, 2018
B. Nebel, R. Mattmüller - Al Planning

18/29

Reduction: state variables
Reduction: initial state

Let $M=\left\langle\Sigma, \square, Q, q_{0}, q_{Y}, \delta\right\rangle$ be the fixed DTM and let p be its
space-bound polynomial.
Given input $w_{1} \ldots w_{n}$, define relevant tape positions
$X:=\{1, \ldots, p(n)\}$.
Initial state
Initially true:

- state $_{q_{0}}$

Motivation
Let $M=\left\langle\Sigma, \square, Q, q_{0}, q_{Y}, \delta\right\rangle$ be the fixed DTM and let p be its space-bound polynomial.
Given input $w_{1} \ldots w_{n}$, define relevant tape positions $X:=\{1, \ldots, p(n)\}$.

- head ${ }_{i}$ for all $i \in X \cup\{0, p(n)+1\}$
- head $_{1}$

Motivation
\square content $_{i, w_{i}}$ for all $i \in\{1, \ldots, n\}$
\square content $_{i, \square}$ for all $i \in X \backslash\{1, \ldots, n\}$
Initially false:

- all others

December 21, 2018

- content $_{i, a}$ for all $i \in X, a \in \Sigma_{\square}$
\rightsquigarrow allows encoding a Turing machine configuration

Reduction: goal

Let $M=\left\langle\Sigma, \square, Q, q_{0}, q_{\gamma}, \delta\right\rangle$ be the fixed DTM and let p be its space-bound polynomial.
Given input $w_{1} \ldots w_{n}$, define relevant tape positions $X:=\{1, \ldots, p(n)\}$.

Goal
space-bound polynomial.
Given input $w_{1} \ldots w_{n}$, define relevant tape positions
$X:=\{1, \ldots, p(n)\}$.
Operators
One operator for each transition rule $\delta(q, a)=\left\langle q^{\prime}, a^{\prime}, \Delta\right\rangle$
and each cell position $i \in X$:

- effect: \neg state $_{q} \wedge \neg$ head $_{i} \wedge \neg$ content $_{i, a}$

$$
\wedge \text { state }_{q^{\prime}} \wedge \text { head }_{i+\Delta} \wedge \text { content }_{i, a^{\prime}}
$$

■ If $q=q^{\prime}$ and/or $a=a^{\prime}$, omit the effects on state ${ }_{q}$ and/or content $_{i, a}$, to avoid consistency condition issues.

 Motivation Complexity $\underset{\substack{\text { (Bounded) plan } \\ \text { exisencee }}}{ }$ | Pspace- |
| :--- |
| compeleness | More

complexity results Summary
state $_{q_{\gamma}}$

PSPACE-completeness for STRIPS plan

existence

Membership for PlanLen was already shown.
Hardness for PlanEx follows because we just presented a polynomial reduction from an arbitrary problem in PSPACE to
\qquad
Theorem (PSPACE-completeness; Bylander, 1994)
PlanEx and PlanLen are PSPACE-complete.
This is true even when restricting to STRIPS tasks.

Proof.

December 21, 2018
B. Nebel, R. Mattmüller - AI Planning

26/29

Summary	
- Propositional planning is PSPACE-complete. - The hardness proof is a polynomial reduction that translates an arbitrary polynomial-space DTM into a STRIPS task: - Configurations of the DTM are encoded by propositional variables. - Operators simulate transistions of the DTM. - The DTM accepts an input iff there is a plan for the corresponding STRIPS task. - This implies that there is no polynomial algorithm for classical planning unless $\mathrm{P}=\mathrm{PSPACE}$. - It also means that classical planning is not polynomially reducible to any problem in NP unless NP=PSPACE.	

