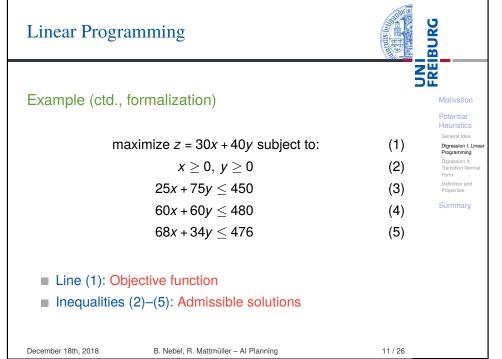

Motivation: pote	ential heuristics	BURG		
		FRE		
Example (potential	heuristic in chess)	Motivation		
Evaluation function f	Potential Heuristics			
(from White's perspe	Summary			
	營一營)+5·(邕一邕)+ 亂一兌)+3·(②一為)+1·(岛一▲)			
where 營, 螢, 冨, 簋, queens, rooks, etc. s				
Question: Can we derive a similar heuristic for planning?				
Answer: Yes! (Even declaratively!)				
December 18th, 2018	B. Nebel, R. Mattmüller – Al Planning	4 / 26		



Potential heuristics		פראכ
 Potential heuristics: idea Heuristic design as an optimization problem: Define simple numerical state features f₁,, f_n. 	CN	Motivatio Potential Heuristics General Idea Digression 1:
 Consider heuristics that are linear combinations of features: h(s) = w₁f₁(s) + ··· + w_nf_n(s) 		Programming Digression II: Transition No Form Definition and Properties
 with weights (potentials) w_i ∈ ℝ. Find potentials for which <i>h</i> is admissible and well-informed. 		Summary
Motivation:		
 declarative approach to heuristic design heuristic very fast to compute if features are 		
December 18th, 2018 B. Nebel, R. Mattmüller – Al Planning	6 / 26	

Linear Programming

10/26

Goal: solve a system of linear inequalities over *n* real-valued variables while optimizing some linear objective function.

Motivation Potential Heuristics

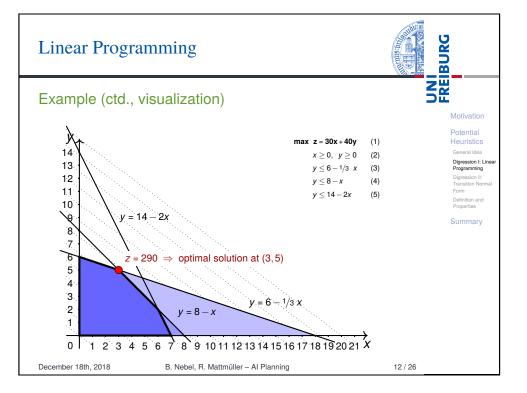
General Idea Digression I: Linear Programming

Digression II:

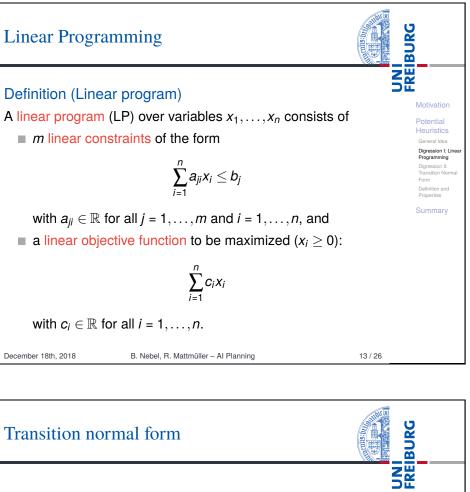
Summarv

Form Definition and Properties

Example (Production domain)


Two sorts of items with time requirements and profit per item.

	Cutting	Assembly	Postproc.	Profit per item
(x) sort 1	25	60	68	30
(<i>y</i>) sort 2	75	60	34	40
per day	\leq 450	\leq 480	\leq 476	maximize!

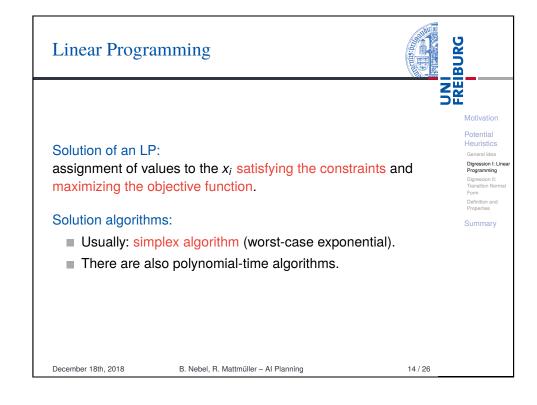

Aim: Find numbers of pieces x of sort 1 and y of sort 2 produced per day such that resource constraints are met and objective function is maximized.

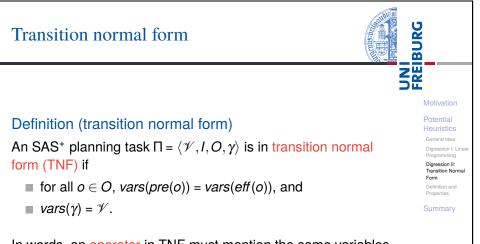
December 1	8th, 2018	B. Nebel, F

R. Mattmüller – Al Planning

Transition normal form

Standard description of LP-based derivation of potentials assumes transition normal form.


Assumption (for the rest of the chapter): only SAS⁺ tasks.


Notation: variables occurring in conditions and effects.

Definition $(vars(\phi), vars(e))$

For a logical formula φ over finite-domain variables \mathscr{V} , vars(φ) denotes the set of finite-domain variables occurring in φ .

For an effect *e* over finite-domain variables \mathcal{V} , *vars(e)* denotes the set of finite-domain variables occurring in e.

In words, an operator in TNF must mention the same variables in the precondition and effect, and a goal in TNF must mention all variables (= specify exactly one goal state).

Motivation

Potential

Heuristics General Idea

Diaression II:

Summarv

Form

Transition Norma

Converting operators to TNF: violations

There are two ways in which an operator o can violate TNF:

- There exists a variable $v \in vars(pre(o)) \setminus vars(eff(o))$.
- There exists a variable $v \in vars(eff(o)) \setminus vars(pre(o))$.

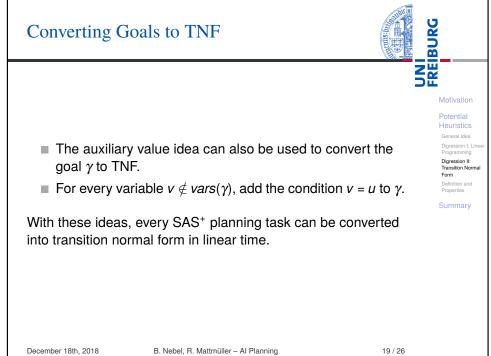
The first case is easy to address: if v = d is a precondition with no effect on v, just add the effect v := d.

Form Definition and Summarv

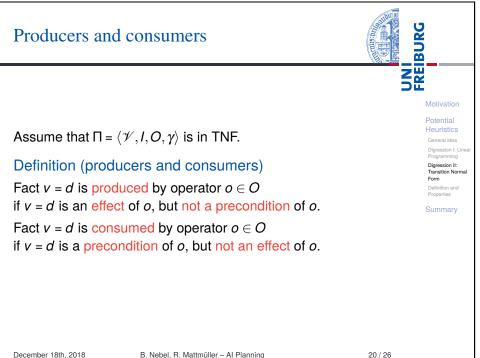
Motivation

Potential Heuristics

General Idea Digression I: Lin Programming


Digression II: Transition Norma

The second case is more difficult: if we have the effect v := dbut no precondition on v, how can we add a precondition on vwithout changing the meaning of the operator (and without introducing exponentially many new operators)?


December	18th,	2018	

B. Nebel, R. Mattmüller - Al Planning

17/26

Converting C	Operators to TNF	BURG	
domain.	ariable v, add a new auxiliary valu	Motivatio	
•	ariable <i>v</i> and value $d \in \mathscr{D}_v \setminus \{u\}$, a change the value of <i>v</i> from <i>d</i> to <i>u</i> $u\rangle$.	at no cost: General Id Digression Programmi Digression Transition H	ea I: Inj
	rators <i>o</i> and all variables f(<i>o</i>)) \ <i>vars(pre(o</i>)), add the precont	dition $v = u$	
Properties:			
Transforma	tion can be computed in linear tim	e.	
transitions i	auxiliary values, there are new sta in the induced transition system, b een original states remain the sam	ut all <mark>path</mark>	
December 18th, 2018	B. Nebel, R. Mattmüller – Al Planning	18 / 26	

December 18th, 2018

Admissible and consistent potential heuristics

Constraints on potentials characterize (= are necessary and sufficient for) admissible and consistent atomic potential heuristics:

Goal-awareness constraint

 $\sum_{\text{goal atoms }a} w_a = 0$

Consistency constraints (for all operators $o \in O$)

 $\sum_{a \text{ consumed by } o} w_a - \sum_{a \text{ produced by } o} w_a \leq cost(o)$

Remarks:

■ all linear constraints ~→ LP

```
\blacksquare goal-aware and consistent \leadsto admissible and consistent
```

```
December 18th, 2018
```

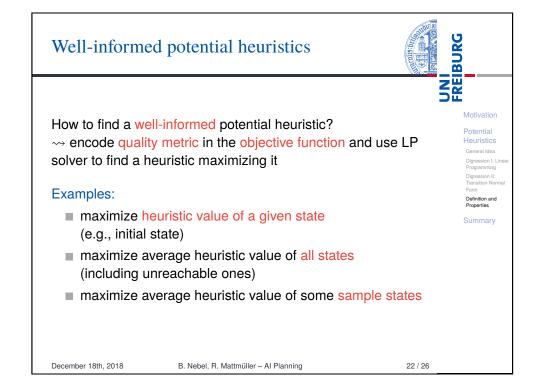
```
B. Nebel, R. Mattmüller – Al Planning
```

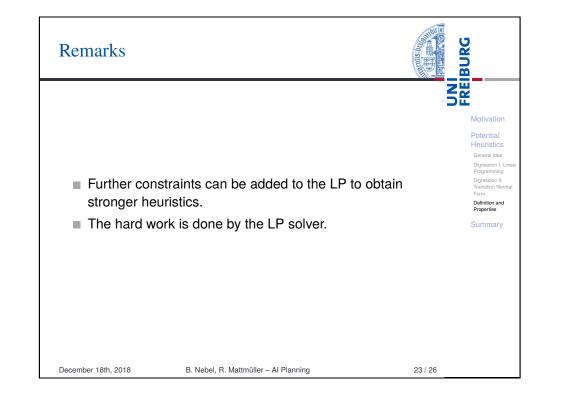
UNI FREIBURG

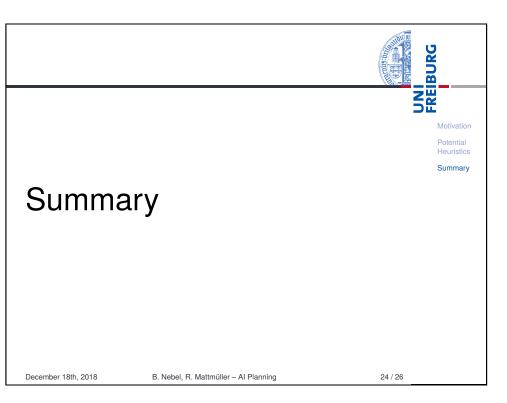
21 / 26

Motivation

Potential


Heuristics


General Idea


Programming Digression II:

Transition Norm

Definition and Properties

UNI FREIBURG UNI FREIBURG **Summary** Credit Motivation Motivation Declarative method for obtaining a heuristic Potential Potential Heuristics Heuristics Potential heuristics are linear combinations of features. Summary Summary Needed: features and weights (potentials) Features: facts (for us; can be generalized) Slides heavily based on those by Gabriele Röger and Thomas Keller (Uni Basel). Potentials: computed by solving an LP, given constraints that encode goal-awareness and consistency, and an objective function to maximize heuristic value. Necessary prerequisite: without loss of generality, task is in transition normal form (same variables in preconditions and effects, all variables mentioned in the goal). December 18th, 2018 B. Nebel, R. Mattmüller - Al Planning 25 / 26 December 18th, 2018 B. Nebel, R. Mattmüller - Al Planning 26 / 26