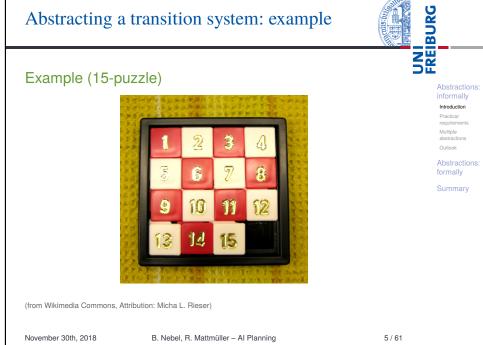
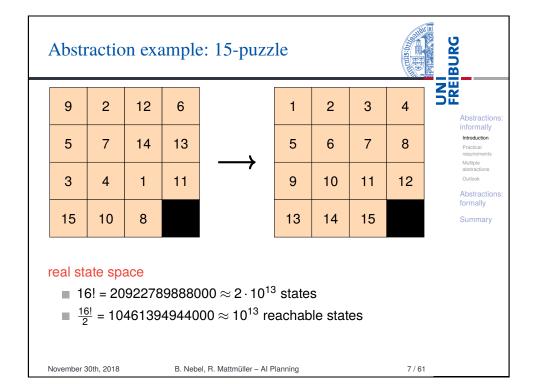


November 30th, 2018

Abstracting a transition system: example





Abstracting a transition system: example

Abstraction

Introduction

requirement Multiple

abstractions

Abstractions

Summary

Outlook

Practical

Example (15-puzzle)

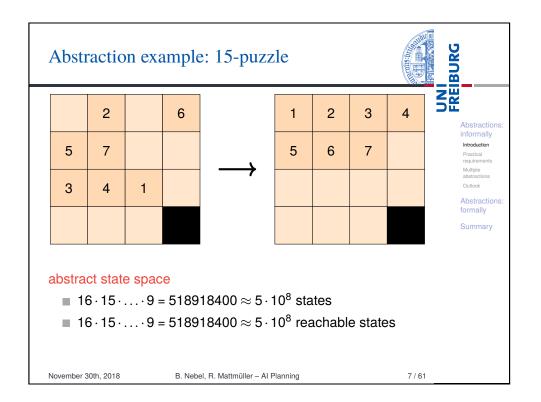
A 15-puzzle state is given by a permutation $\langle b, t_1, \ldots, t_{15} \rangle$ of $\{1, \ldots, 16\}$, where *b* denotes the blank position and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location of tiles 8-15, i.e., two states are distinguished iff they differ in the position of the blank or one of the tiles 1-7:

$$\alpha(\langle b, t_1, \ldots, t_{15} \rangle) = \langle b, t_1, \ldots, t_7 \rangle$$

The heuristic values for this abstraction correspond to the cost of moving tiles 1-7 to their goal positions.

B. Nebel, R. Mattmüller - Al Planning 6/61 November 30th, 2018



Computing the abstract transition system

UNI FREIBURG

Given \mathscr{T} and α , how do we compute \mathscr{T}' ?

Requirement

We want to obtain an admissible heuristic. Hence, $h^*(\alpha(s))$ (in the abstract state space \mathscr{T}') should never overestimate $h^*(s)$ (in the concrete state space \mathscr{T}).

requirements Multiple abstractions Outlook Abstraction: formally Summary

Introduction

Practical

An easy way to achieve this is to ensure that all solutions in \mathscr{T} also exist in \mathscr{T}' :

- If *s* is a goal state in \mathcal{T} , then $\alpha(s)$ is a goal state in \mathcal{T}' .
- If \mathscr{T} has a transition from *s* to *t*, then \mathscr{T}' has a transition from $\alpha(s)$ to $\alpha(t)$.

November 30th, 2018

B. Nebel, R. Mattmüller – Al Planning

Practical requirements for abstractions

Abstractions

Practical

requiremen

abstractions

Abstractio

Summary

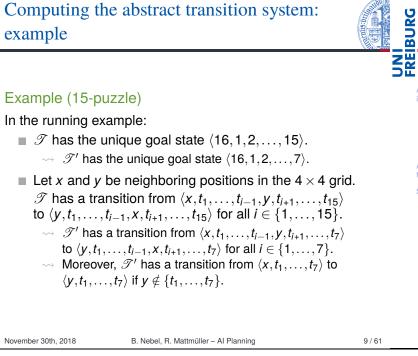
8/61

To be useful in practice, an abstraction heuristic must be efficiently computable. This gives us two requirements for α :

- For a given state *s*, the abstract state $\alpha(s)$ must be efficiently computable.
- For a given abstract state α(s), the abstract goal distance h*(α(s)) must be efficiently computable.

There are different ways of achieving these requirements:

- pattern database heuristics (Culberson & Schaeffer, 1996)
- merge-and-shrink abstractions (Dräger, Finkbeiner & Podelski, 2006)
- structural patterns (Katz & Domshlak, 2008)
- Cartesian abstractions (Ball, Podelski & Rajamani, 2001; Seipp & Helmert, 2013)



Practical requirements for abstractions: example

Example (15-puzzle)

In our running example, α can be very efficiently computed: just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search, most common algorithms precompute all abstract goal distances prior to search by performing a backward breadth-first search from the goal state(s). The distances are then stored in a table (requires about 495 MB of RAM). During search, computing $h^*(\alpha(s))$ is just a table lookup.

This heuristic is an example of a pattern database heuristic.

B. Nebel, R. Mattmüller - Al Planning

Introduction

Practical requirement Multiple

abstraction: Outlook

Abstraction

Summary

UNI FREIBURG

Abstractio

Practical

Multiple

Outlook

formally

Summary

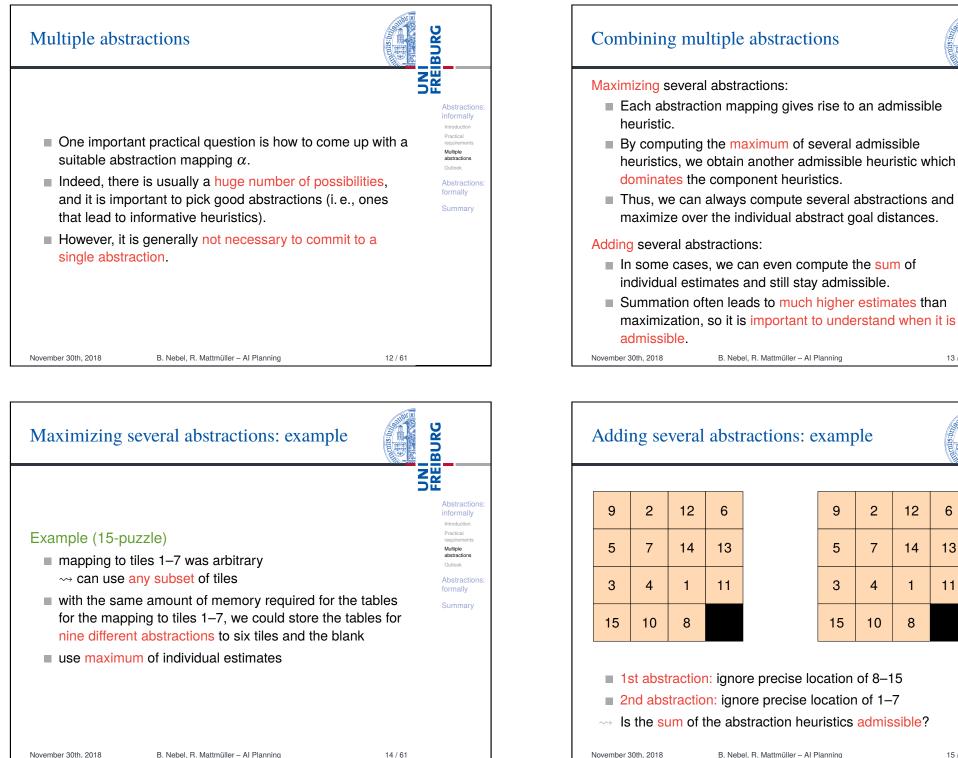
requirement

abstraction

November 30th, 2018

B. Nebel, R. Mattmüller – Al Planning

10 / 61



Practical requirement Multiple abstractions Outlook Abstractions formally Summary

Abstraction

UNI FREIBURG

B. Nebel, R. Mattmüller - Al Planning

13/61

12

14

1

8

6

13

11

9

5

3

15

2

7

4

10

UNI FREIBURG

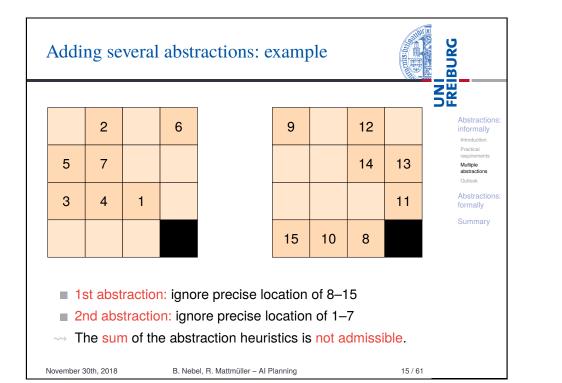
Abstraction

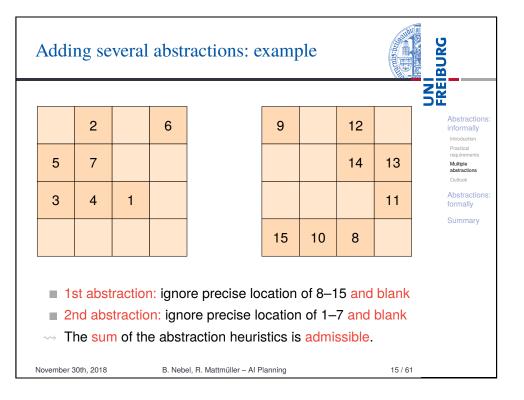
Multiple

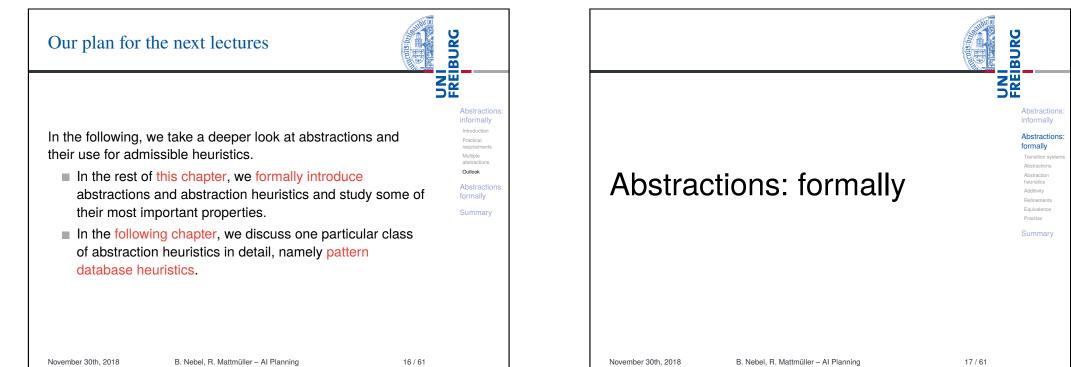
formally

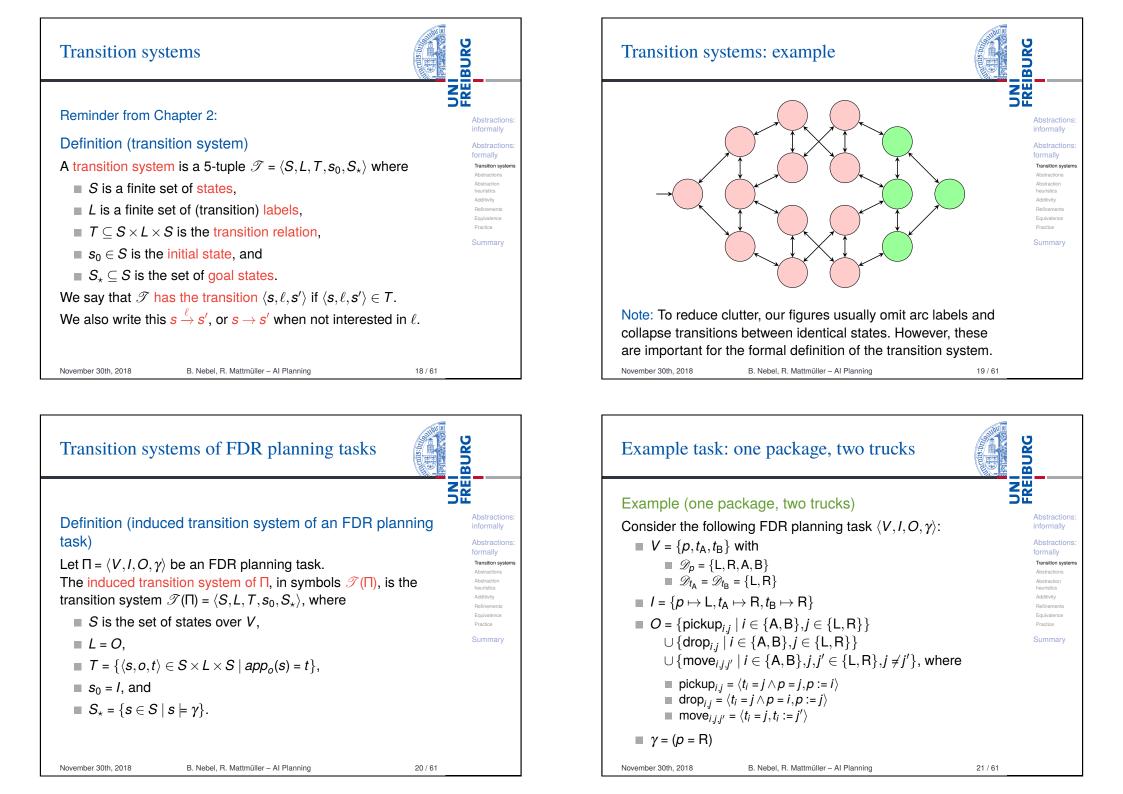
Summary

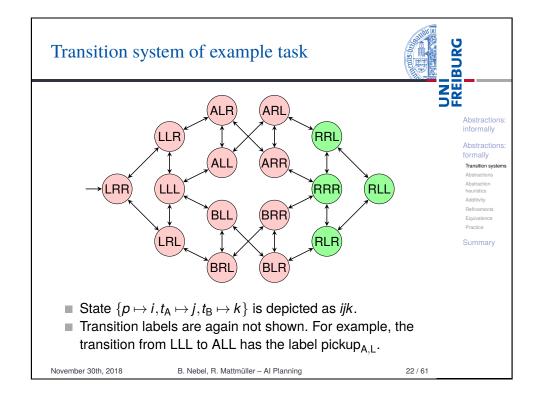
abstractions



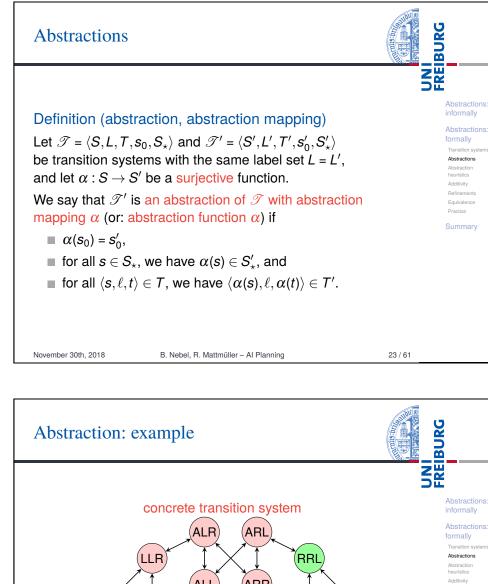


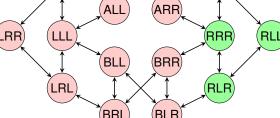






BURG Abstractions: terminology UNI REI Let \mathcal{T} and \mathcal{T}' be transition systems and α a function such that \mathcal{T}' is an abstraction of \mathcal{T} with abstraction mapping α . Abstractions \blacksquare \mathscr{T} is called the concrete transition system. Abstraction \blacksquare \mathcal{T}' is called the abstract transition system. Transition sy Abstractions Similarly: concrete/abstract state space, concrete/abstract Abstraction transition. etc. Refinement Equivalence We say that: Practice \blacksquare \mathscr{T}' is an abstraction of \mathscr{T} (without mentioning α) Summarv α is an abstraction mapping on \mathcal{T} (without mentioning \mathcal{T}' Note: For a given \mathcal{T} and α , there can be multiple abstractions \mathcal{T}' , and for a given \mathcal{T} and \mathcal{T}' , there can be multiple abstraction mappings α . November 30th, 2018 B. Nebel, R. Mattmüller - Al Planning 24 / 61





B. Nebel, R. Mattmüller - Al Planning

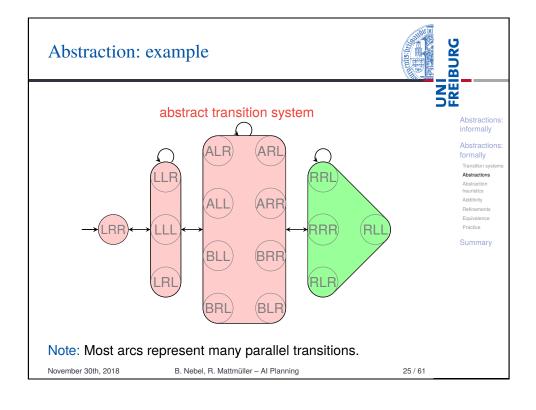
November 30th, 2018

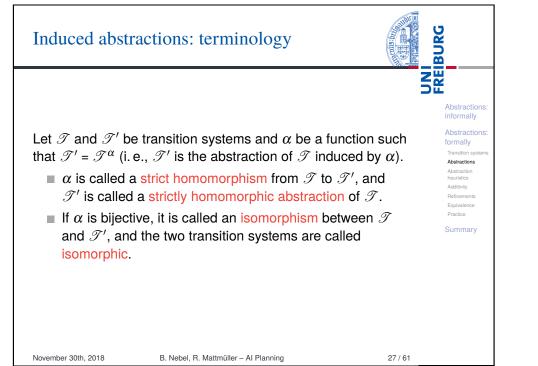
Refinement

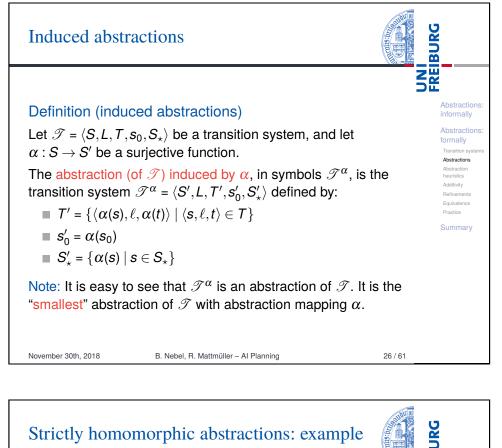
Equivalence

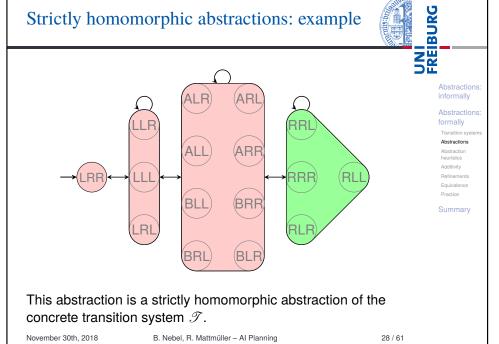
Summary

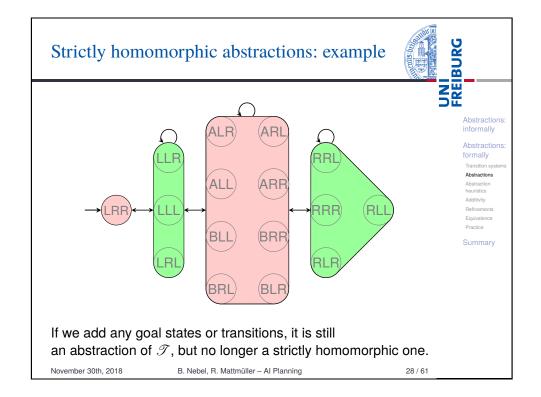
25/61

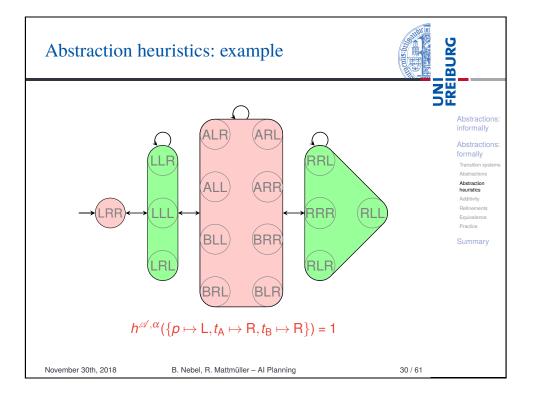




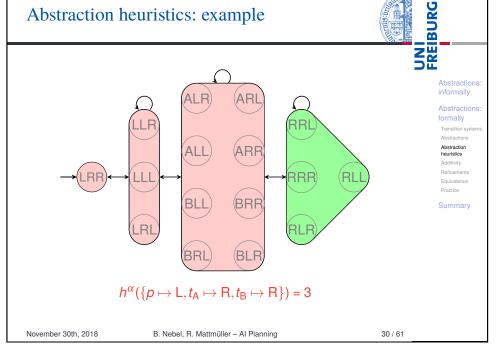








Definition (abs	str. heur. induced by an abstract	
	R planning task with state space S on of $\mathscr{T}(\Pi)$ with abstraction mappir	
The abstraction heuristic function	the heuristic induced by \mathscr{A} and α , $h^{\mathscr{A}}$ on $h^{\mathscr{A},\alpha}: S \to \mathbb{N}_0 \cup \{\infty\}$ which map s)) (the goal distance of $\alpha(s)$ in \mathscr{A})	¹ ,α, is the ^{Transito} s each state ^{Abstract}
Note: $h^{\mathscr{A},\alpha}(s) =$	∞ if no goal state of \mathscr{A} is reachab	le from $\alpha(s)$
Definition (abs	str. heur. induced by strict homo	morphism)
on $\mathscr{T}(\Pi)$. The a	R planning task and α a strict hom abstraction heuristic induced by α , iristic induced by $\mathscr{T}(\Pi)^{\alpha}$ and α , i.e	h^{α} , is the



Consistency of abstraction heuristics

Abstraction

Abstractio

Transition s

Abstraction

heuristics

Refinement

Summary

Practice

31/61

Theorem (consistency and admissibility of $h^{\mathscr{A},\alpha}$)

Let Π be an FDR planning task, and let \mathscr{A} be an abstraction of $\mathscr{T}(\Pi)$ with abstraction mapping α .

Then $h^{\mathscr{A},\alpha}$ is safe, goal-aware, admissible and consistent.

Proof.

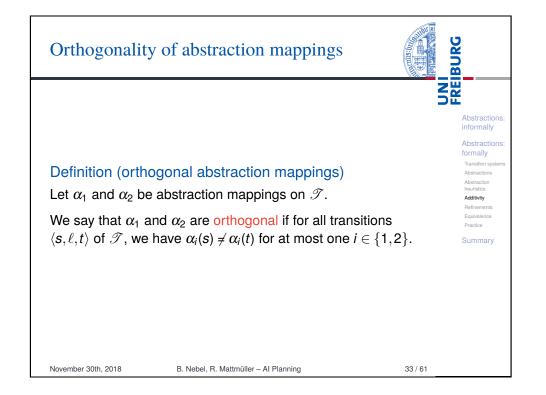
We prove goal-awareness and consistency; the other properties follow from these two.

 $\text{Let } \mathscr{T} = \mathscr{T}(\Pi) = \langle S, L, T, s_0, S_\star \rangle \text{ and } \mathscr{A} = \langle S', L', T', s'_0, S'_\star \rangle.$

Goal-awareness: We need to show that $h^{\mathscr{A},\alpha}(s) = 0$ for all $s \in S_{\star}$, so let $s \in S_{\star}$. Then $\alpha(s) \in S'_{\star}$ by the definition of abstractions and abstraction mappings, and hence $h^{\mathscr{A},\alpha}(s) = h^*_{\mathscr{A}}(\alpha(s)) = 0$.

November 30th, 2018

B. Nebel, R. Mattmüller – Al Planning



Consistency of abstraction heuristics (ctd.)

32/61

Abstraction heuristics

Additivity

Refinement

Equivalence

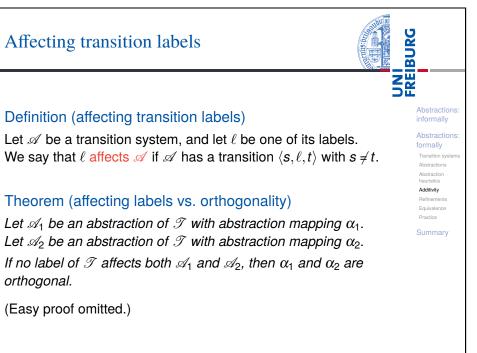
Practice

Proof (ctd.)

Consistency: Let $s, t \in S$ such that t is a successor of s. We need to prove that $h^{\mathscr{A},\alpha}(s) \leq h^{\mathscr{A},\alpha}(t) + 1$. Since t is a successor of s, there exists an operator o with $app_o(s) = t$ and hence $\langle s, o, t \rangle \in T$. By the definition of abstractions and abstraction mappings, we get $\langle \alpha(s), o, \alpha(t) \rangle \in T' \rightsquigarrow \alpha(t)$ is a successor of $\alpha(s)$ in \mathscr{A} . Therefore, $h^{\mathscr{A},\alpha}(s) = h^*_{\mathscr{A}}(\alpha(s)) \leq h^*_{\mathscr{A}}(\alpha(t)) + 1 = h^{\mathscr{A},\alpha}(t) + 1$, where the inequality holds because the shortest path from $\alpha(s)$ to the goal in \mathscr{A} cannot be longer than the shortest path from $\alpha(s)$ to the goal via $\alpha(t)$.

November 30th, 2018

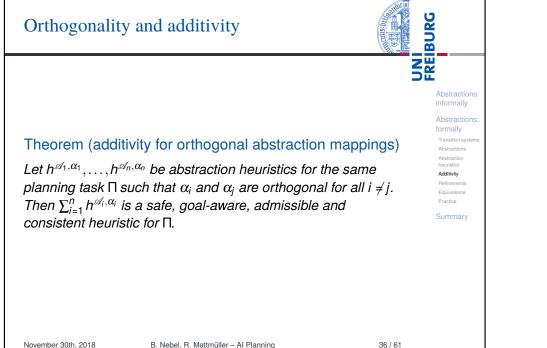
B. Nebel, R. Mattmüller – Al Planning

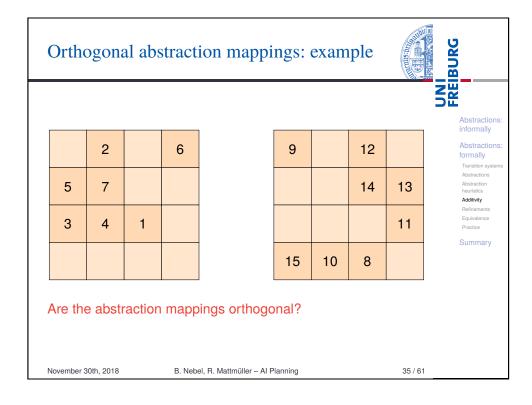


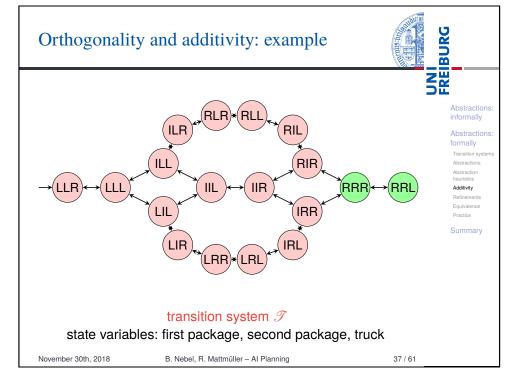
Orthogonal abstraction mappings: example

	2		6	9		12		informally Abstraction formally
5	7					14	13	Transition syster Abstractions Abstraction heuristics Additivity
3	4	1					11	Refinements Equivalence Practice
				15	10	8		Summary

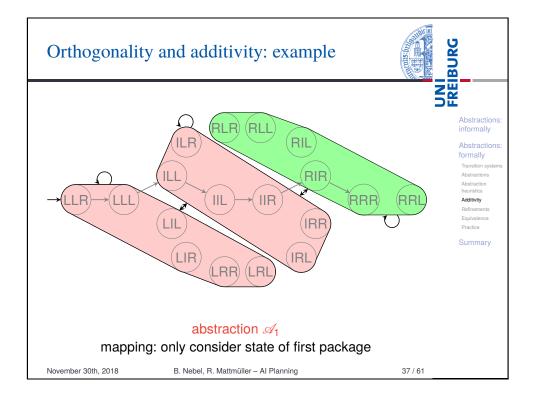
November 30th, 2018	B. Nebel, R. Mattmüller – Al Planning	35 / 61

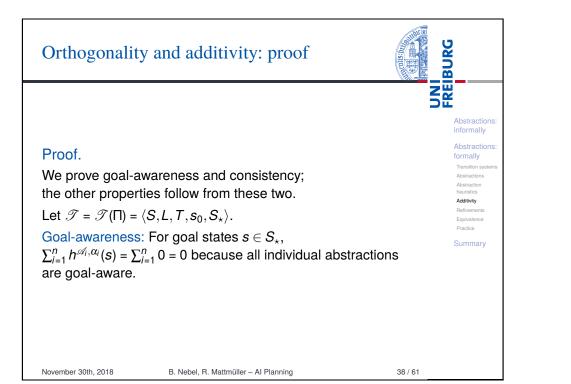


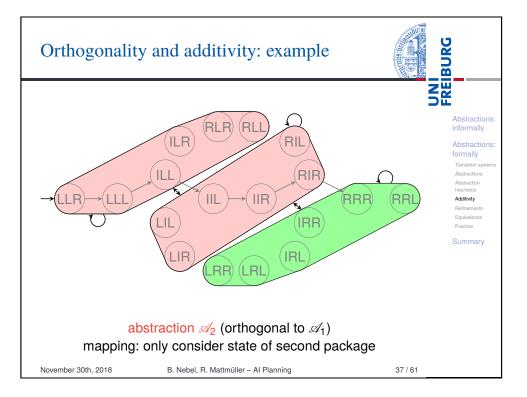




ß







Orthogonality and additivity: proof (ctd.)

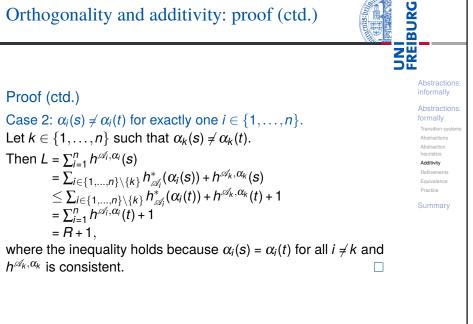
Proof (ctd.)

Abstraction Consistency: Let $s, t \in S$ such that t is a successor of s. Let $L := \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(s)$ and $R := \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(t)$. We need to prove that L < R + 1. Since *t* is a successor of *s*, there exists an operator *o* with Abstraction $app_{o}(s) = t$ and hence $\langle s, o, t \rangle \in T$. Additivity Refinement Because the abstraction mappings are orthogonal, $\alpha_i(s) \neq \alpha_i(t)$ Equivalence Practice for at most one $i \in \{1, \ldots, n\}$. Summary Case 1: $\alpha_i(s) = \alpha_i(t)$ for all $i \in \{1, \ldots, n\}$. Then $L = \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(s)$ $=\sum_{i=1}^{n}h_{\mathcal{A}_{i}}^{*}(\alpha_{i}(s))$ $=\sum_{i=1}^{n}h_{\mathcal{A}_{i}}^{*}(\alpha_{i}(t))$ $=\sum_{i=1}^{n}h^{\widetilde{\alpha}_{i},\alpha_{i}}(t)$ = R < R + 1.November 30th, 2018 B. Nebel, R. Mattmüller - Al Planning 39/61

UNI FREIBURG

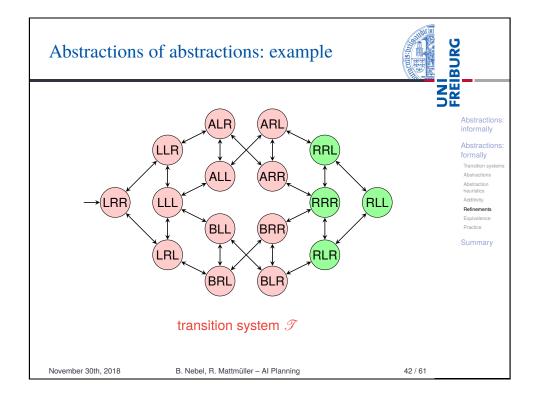
Orthogonality and additivity: proof (ctd.)

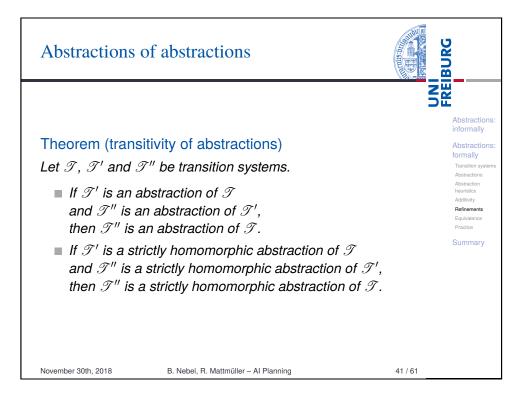
November 30th, 2018

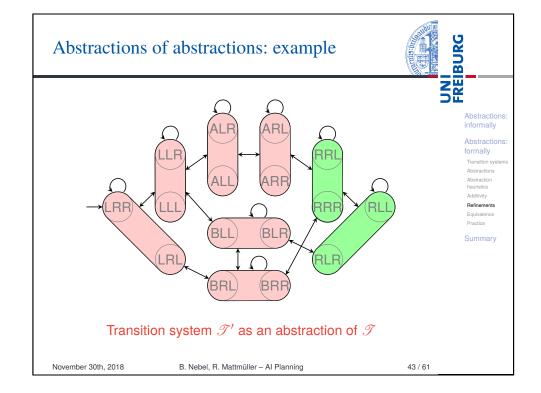


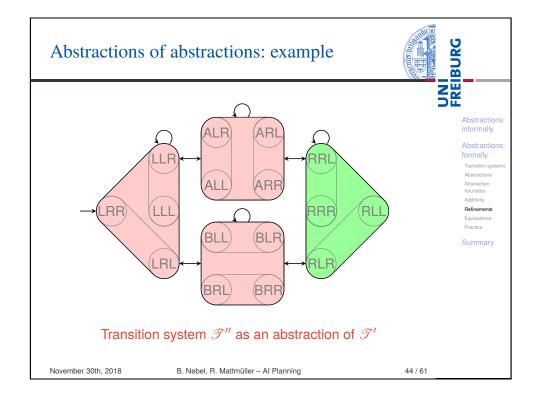
40 / 61

B. Nebel, R. Mattmüller - Al Planning









Abstractions of abstractions (proof)

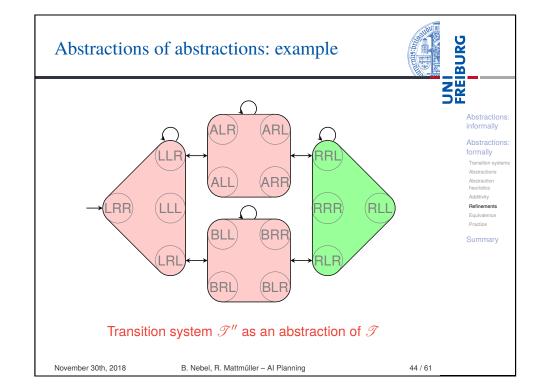
Proof.

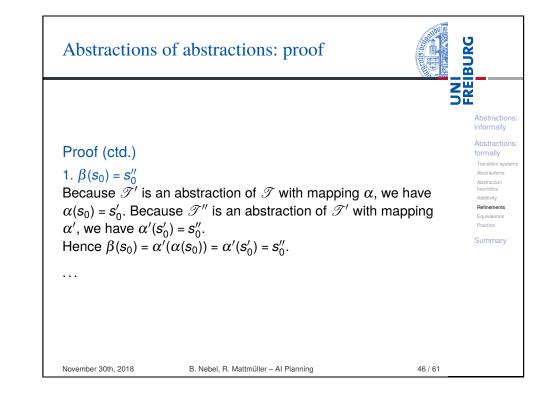
Let $\mathscr{T} = \langle S, L, T, s_0, S_* \rangle$, let $\mathscr{T}' = \langle S', L, T', s'_0, S'_* \rangle$ be an abstraction of \mathscr{T} with abstraction mapping α , and let $\mathscr{T}'' = \langle S'', L, T'', s''_0, S''_* \rangle$ be an abstraction of \mathscr{T}' with abstraction mapping α' . We show that \mathscr{T}'' is an abstraction of \mathscr{T} with abstraction mapping $\beta := \alpha' \circ \alpha$, i. e., that

1 $\beta(s_0) = s_0'',$

- $\fbox{2}$ for all $s \in \mathcal{S}_{\star},$ we have $eta(s) \in \mathcal{S}_{\star}'',$ and
- **B** for all $\langle s, \ell, t \rangle \in T$, we have $\langle \beta(s), \ell, \beta(t) \rangle \in T''$.

Moreover, we show that if α and α' are strict homomorphisms, then β is also a strict homomorphism.





. . .

45 / 61

UNI FREIBURG

Abstraction

Abstraction

Transition sy

Abstraction

Refinement

Equivalence

Summarv

Practice

Abstractions of abstractions: proof (ctd.)

Proof (ctd.)

2. For all $s \in S_{\star}$, we have $\beta(s) \in S''_{\star}$:

Let $s \in S_{\star}$. Because \mathscr{T}' is an abstraction of \mathscr{T} with mapping α , we have $\alpha(s) \in S'_{\star}$. Because \mathscr{T}'' is an abstraction of \mathscr{T}' with mapping α' and $\alpha(s) \in S'_{\star}$, we have $\alpha'(\alpha(s)) \in S''_{\star}$. Hence $\beta(s) = \alpha'(\alpha(s)) \in S''_{\star}$.

```
Abstraction
informally
Abstraction
formally
Transition syst
Abstraction
bastraction
Adstrivity
Retinements
Equivalence
Practice
```

BURG

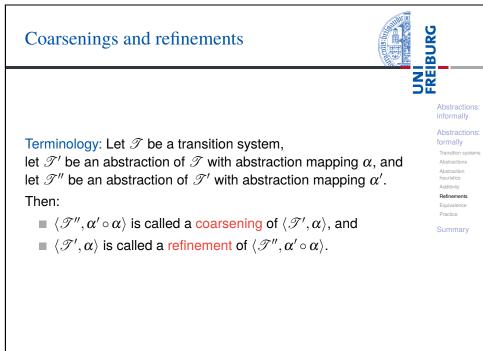
Strict homomorphism if α and α' strict homomorphisms:

Let $s'' \in S''_{\star}$. Because α' is a strict homomorphism, there exists a state $s' \in S'_{\star}$ such that $\alpha'(s') = s''$. Because α is a strict homomorphism, there exists a state $s \in S_{\star}$ such that $\alpha(s) = s'$. Thus $s'' = \alpha'(\alpha(s)) = \beta(s)$ for some $s \in S_{\star}$.

• • •

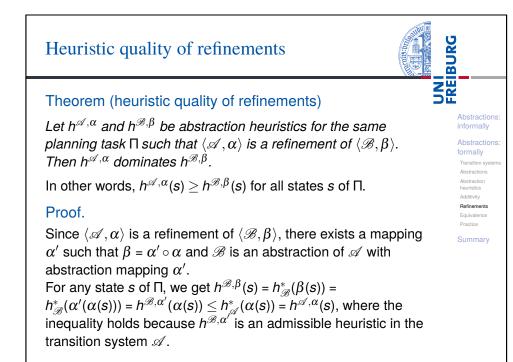
November 30th, 2018

B. Nebel, R. Mattmüller – Al Planning



Proof (ctd.)

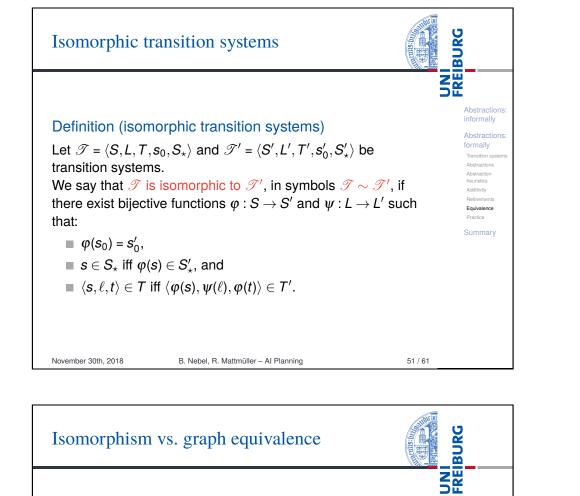
3. For all $\langle s, \ell, t \rangle \in T$, we have $\langle oldsymbol{eta}(s), \ell, oldsymbol{eta}(t) angle \in$	Τ"	Abstractio informally
Let $\langle \boldsymbol{s}, \ell, t \rangle \in T$. Beca	ause \mathscr{T}' is an abstraction	of ${\mathscr T}$ with	Abstraction
mapping α , we have	$\langle lpha(s), \ell, lpha(t) angle \in T'$. Becau	use \mathscr{T}'' is an	formally Transition syst
have $\langle lpha'(lpha(s)), \ell, lpha'(a) \rangle$	th mapping α' and $\langle \alpha(s), \alpha(t) \rangle \in T''$. = $\langle \alpha'(\alpha(s)), \ell, \alpha'(\alpha(t)) \rangle \in$,	Abstractions Abstraction heuristics Additivity Refinements Equivalence
	n if α and α' strict homom		Practice
Let $\langle s'', \ell, t'' \rangle \in T''$. B there exists a transiti $\alpha'(t') = t''$. Because transition $\langle s, \ell, t \rangle \in T$	because α' is a strict homo- tion $\langle s', \ell, t' \rangle \in T'$ such that α is a strict homomorphis if such that $\alpha(s) = s'$ and $\alpha'(\alpha(s)), \ell, \alpha'(\alpha(t)) \rangle = \langle \beta(s), \eta \rangle$	omorphism, t $\alpha'(s') = s''$ and m, there exists a $\alpha(t) = t'$.	Guinnary
November 30th, 2018	B. Nebel, R. Mattmüller – Al Planning	48 / 61	

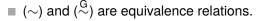


November 30th, 2018

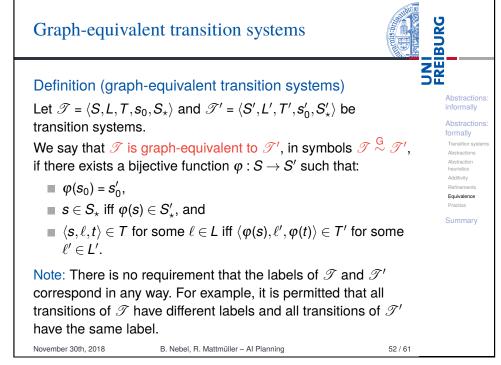
47/61

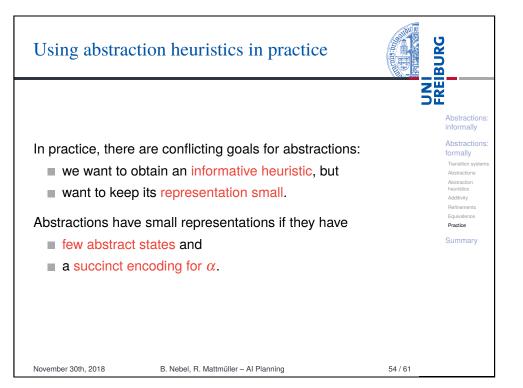
November 30th, 2018





- Two isomorphic transition systems are interchangeable for all practical intents and purposes.
- Two graph-equivalent transition systems are interchangeable for most intents and purposes.
 In particular, their state distances are identical, so they define the same abstraction heuristic for corresponding abstraction functions.
- Isomorphism implies graph equivalence, but not vice versa.





53 / 61

Abstraction

informally Abstraction

Transition sy

Abstraction

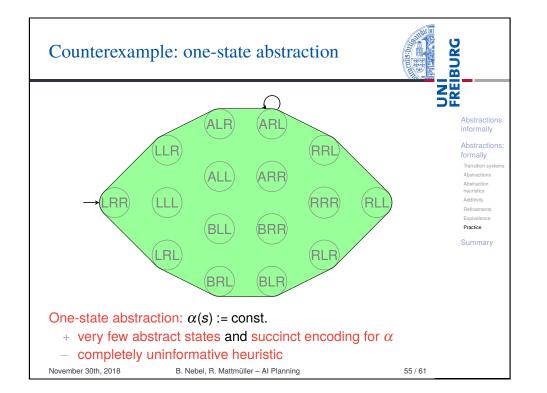
heuristics

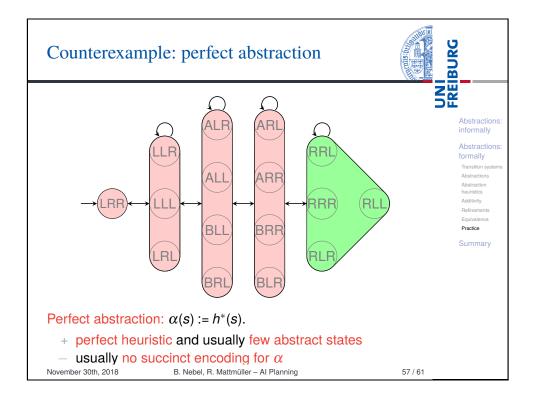
Refinement

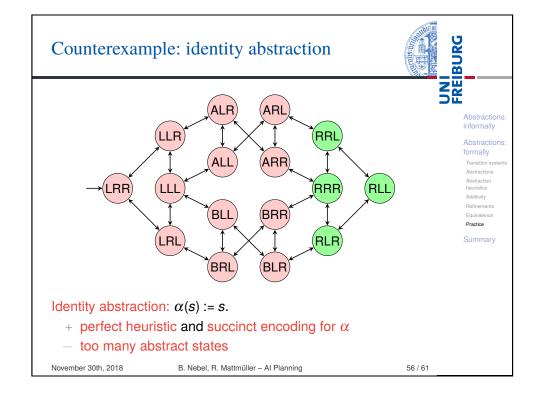
Equivalence

Summarv

Practice







Summary

UNI	
	Abstractions:

59/61

informally Abstractions

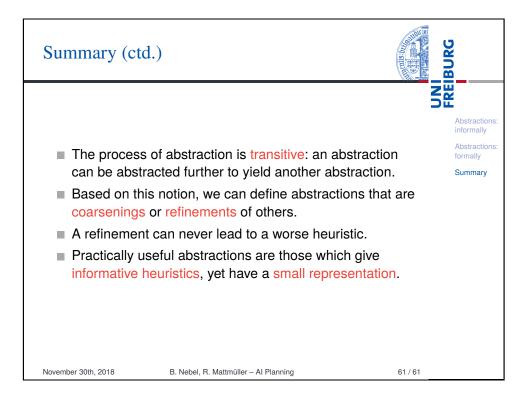
formally

Summarv

- An abstraction relates a transition system *T* (e.g. of a planning task) to another (usually smaller) transition system *T* via an abstraction mapping α.
- Abstraction preserves all important aspects of *T*: initial state, goal states and (labeled) transitions.
- Hence, they can be used to define heuristics for the original system *S*: estimate the goal distance of *s* in *S* by the optimal goal distance of α(*s*) in *S*'.
- Such abstraction heuristics are safe, goal-aware, admissible and consistent.

November 30th, 2018

B. Nebel, R. Mattmüller – Al Planning



Summary (cto	d.)	BURG
Strictly hom	omorphic abstractions are desirable	
	de "unnecessary" abstract goal stat	1011
transitions (which could lower heuristic values)	• Sur
	on from the states of ${\mathscr T}$ to any set is provide the states of a natural w	
losing prope	traction heuristics can be added wi erties like admissibility if the underly mappings are <mark>orthogonal</mark> .	
	nt condition for orthogonality is that are affected by disjoint sets of labo	
November 30th, 2018	B. Nebel, R. Mattmüller – Al Planning	60 / 61