

Search states vs. search nodes

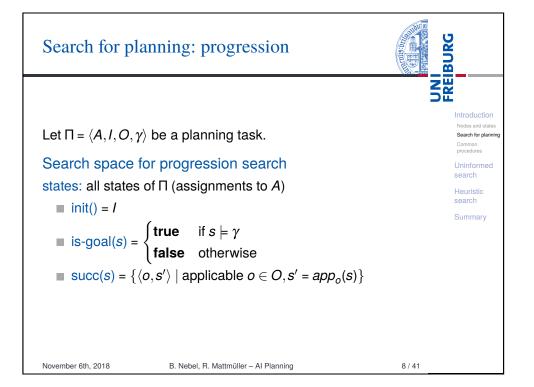
In search, one distinguishes:

- search states *s* → states (vertices) of the transition system
- search nodes $\sigma \rightsquigarrow$ search states plus information on where/when/how they are encountered during search

What is in a search node?

Different search algorithms store different information in a search node σ , but typical information includes:

- state(σ): associated search state
- **parent**(σ): pointer to search node from which σ is reached
- **action**(σ): action leading from *state*(*parent*(σ)) to *state*(σ)
- \blacksquare $g(\sigma)$: cost of σ (length of path from the root node)


For the root node, $parent(\sigma)$ and $action(\sigma)$ are undefined.

November 6th, 2018

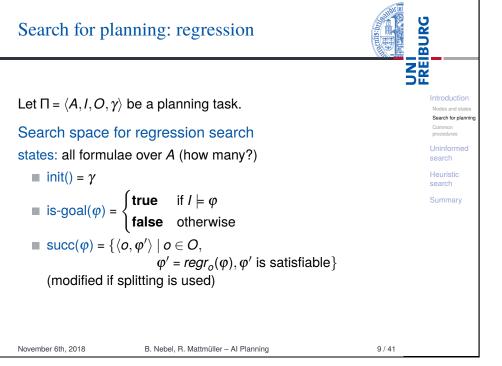
B. Nebel, R. Mattmüller - Al Planning

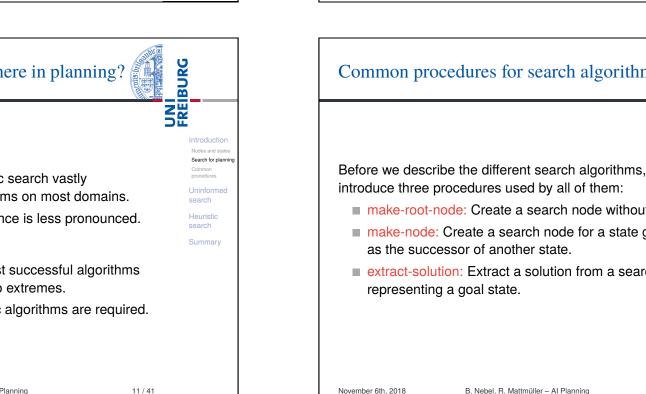
UNI FREIBURG Required ingredients for search Nodes and state A general search algorithm can be applied to any transition Search for plann system for which we can define the following three operations: procedure ■ init(): generate the initial state search ■ is-goal(s): test if a given state is a goal state Heuristic search succ(s): generate the set of successor states of state s, along with the operators through which they are reached (represented as pairs (o, s') of operators and states) Together, these three functions form a search space (a very similar notion to a transition system). November 6th, 2018 B. Nebel, R. Mattmüller - Al Planning 7/41

Search states vs	s. planning states		BURG
		N	
Search states \neq (pla	anning) states:		Introductio
Search states planning sense	don't have to correspond to si e.	tates in the	Nodes and stat Search for plan Common procedures
1 0	n: search states \approx (planning) states : search states \approx sets of states (Uninformed search
0	nms for planning where searc s are called state-space searc		Heuristic search Summary
	ng, regression is <mark>not</mark> an exam earch, although the term is ofte	-	
	vill put the emphasis on progr ys state-space search.	ession, which	
November 6th, 2018	B. Nebel, R. Mattmüller – Al Planning	6 / 41	

BURG

UNI FREI

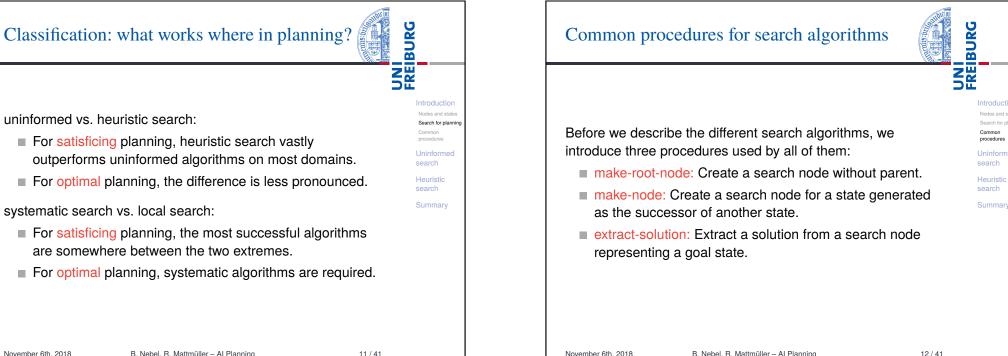

5/41


Nodes and state

Search for pla

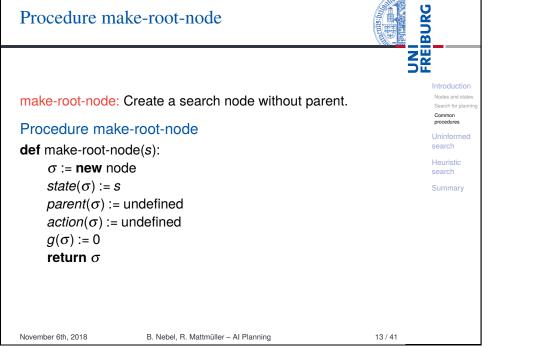
Uninformed search

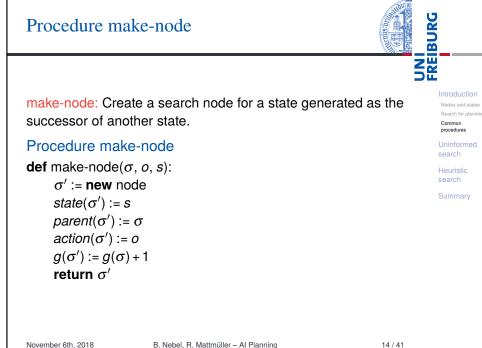
Heuristic search

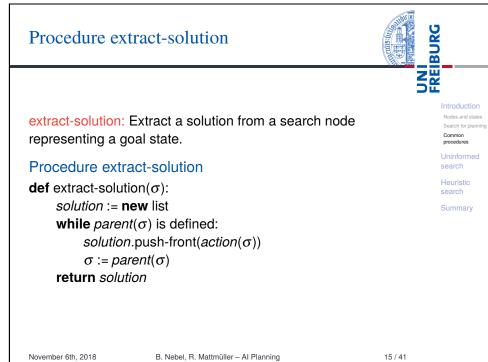


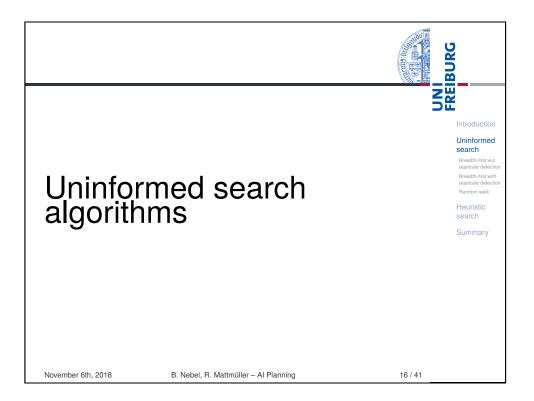
UNI FREIBURG uninformed search vs. heuristic search: uninformed search algorithms only use the basic Search for plannin ingredients for general search algorithms procedure heuristic search algorithms additionally use heuristic search functions which estimate how close a node is to the goal Heuristic systematic search vs. local search: Summary systematic algorithms consider a large number of search nodes simultaneously local search algorithms work with one (or a few) candidate solutions (search nodes) at a time not a black-and-white distinction; there are crossbreeds (e.g., enforced hill-climbing)

B. Nebel, R. Mattmüller - Al Planning


10/41


Classification of search algorithms




November 6th, 2018

November 6th, 2018

Uninformed search algorithms

17/41

search

Breadth-first w/c

duplicate detecti

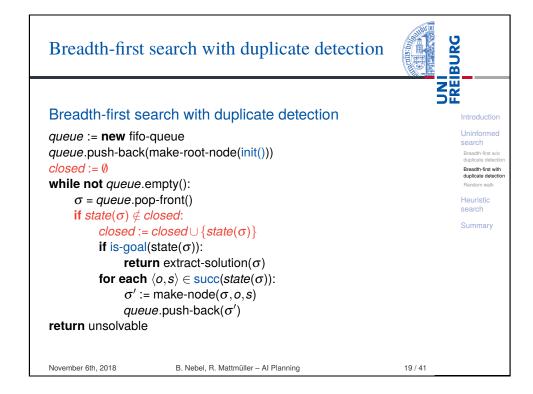
Breadth-first with

Random walk

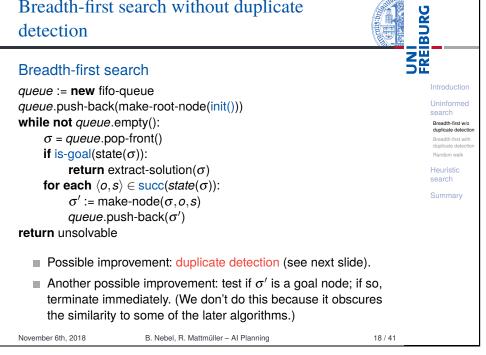
Heuristic

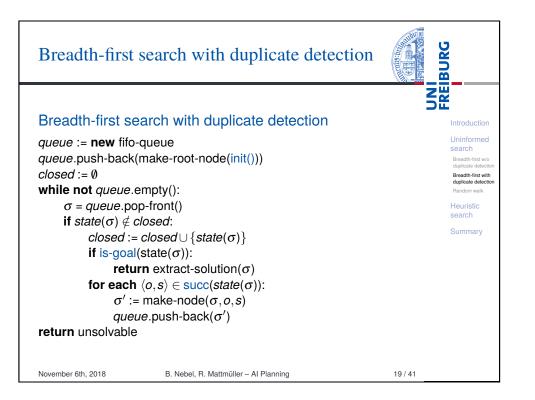
search

- Uninformed algorithms are less relevant for planning than heuristic ones, so we keep their discussion brief.
- Uninformed algorithms are mostly interesting to us because we can compare and contrast them to related heuristic search algorithms.


Popular uninformed systematic search algorithms:

- breadth-first search
- depth-first search
- iterated depth-first search


Popular uninformed local search algorithms:


- random walk
- November 6th, 2018

B. Nebel, R. Mattmüller - Al Planning

Breadth-first search without duplicate detection

Random walk	BURG			
Random walk $\sigma := make-root-node(init())$ forever:if is-goal(state(σ)):return extract-solution(σ)Choose a random element $\langle o, s \rangle$ from succ(state(σ)). $\sigma := make-node(\sigma, o, s)$ The algorithm usually does not find any solutions, unless almost every sequence of actions is a plan.Often, it runs indefinitely without making progress.It can also fail by reaching a dead end, a state with no successors. This is a weakness of many local search approaches.	Introduction Uninformed search Breadth-first with duplicate detection Breadth-first with duplicate detection Redom walk Heuristic search Summary	Heurist	ic search algor	rithms
November 6th, 2018 B. Nebel, R. Mattmüller – Al Planning 20 / 41		November 6th, 2018	B. Nebel, R. Mattmüller – Al Planning	21 / 41

Heuristic search algorithms: systematic

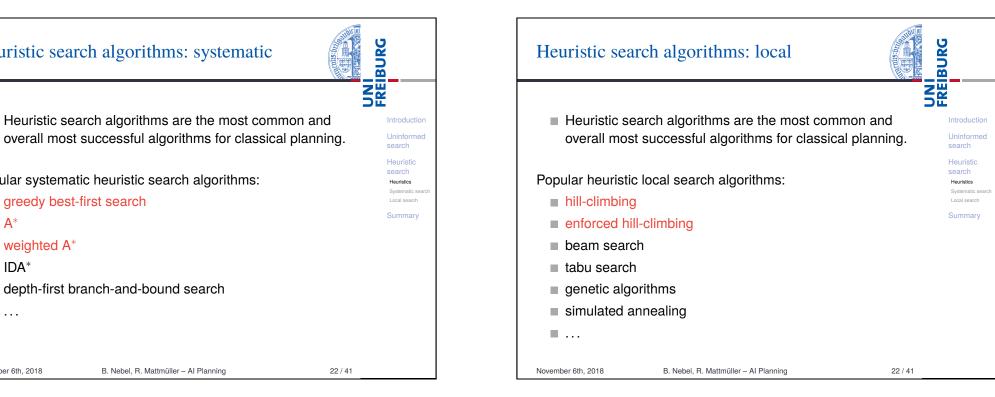
Popular systematic heuristic search algorithms:

depth-first branch-and-bound search

greedy best-first search

■ A*

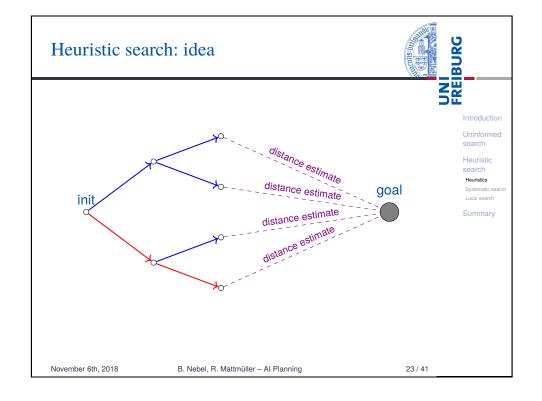
IDA*

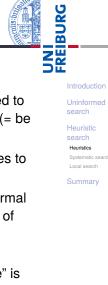

....

November 6th, 2018

weighted A*

Heuristic search algorithms are the most common and

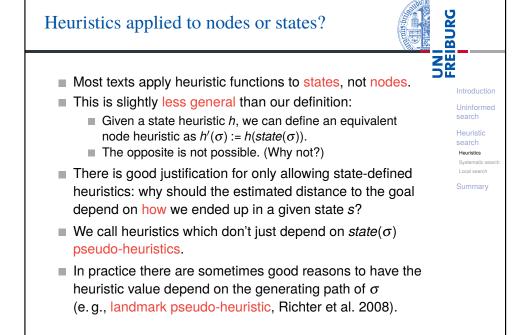

B. Nebel, R. Mattmüller - Al Planning


UNI FREIBURG

Uninformed search Heuristic search Heuristics

Systematic searc Local search Summary

What exactly is a heuristic estimate?

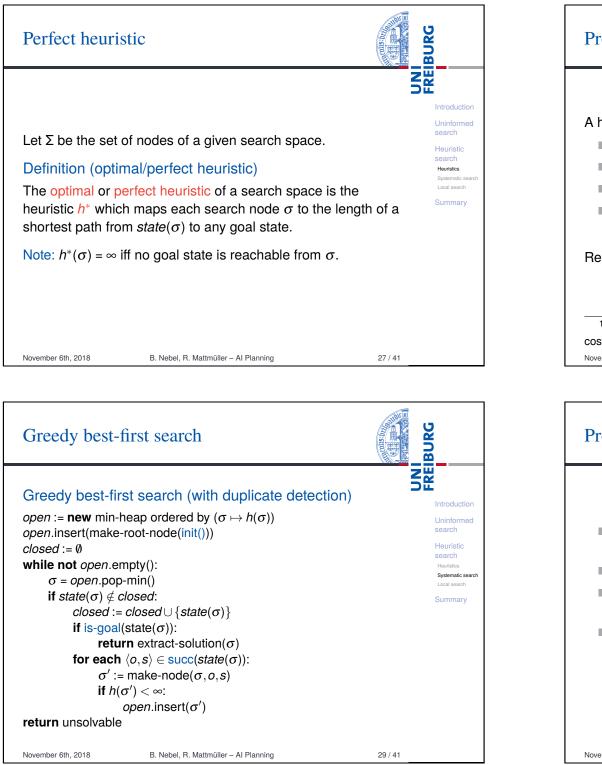


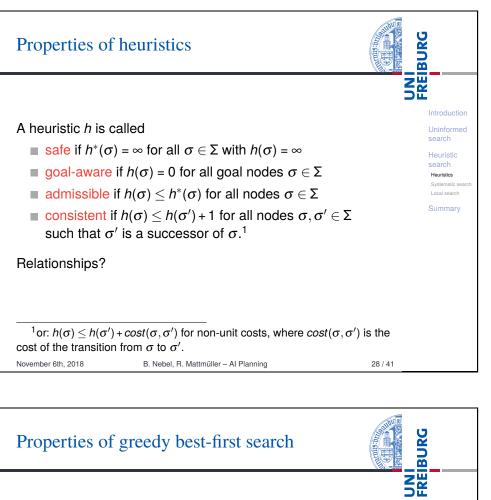
What does it mean that *h* "estimates the goal distance"?

- For most heuristic search algorithms, h does not need to have any strong properties for the algorithm to work (= be correct and complete).
- However, the efficiency of the algorithm closely relates to how accurately *h* reflects the actual goal distance.
- For some algorithms, like A*, we can prove strong formal relationships between properties of *h* and properties of the algorithm (optimality, dominance, run-time for bounded error, ...)
- For other search algorithms, "it works well in practice" is often as good an analysis as one gets.

Required ingred	dients for neuris	the search		B B
			N	FRE
	algorithm requires or	•		Introductior Uninformed search Heuristic
	nodes of a given sea			Search Heuristics Systematic sear Local search
function $h: \Sigma \to \mathbb{N}_0$				Summary
value of heuristic h	alled the heuristic est for node σ . It is sup the nearest goal not	posed to estimate		
November 6th, 2018	B. Nebel, R. Mattmüller – Al Plar	ining	24 / 41	
Heuristics appl	ied to nodes or s	states?		BURG
			z	

Paquirad ingradiants for bouristic saarch




B. Nebel, R. Mattmüller – Al Planning

25 / 41

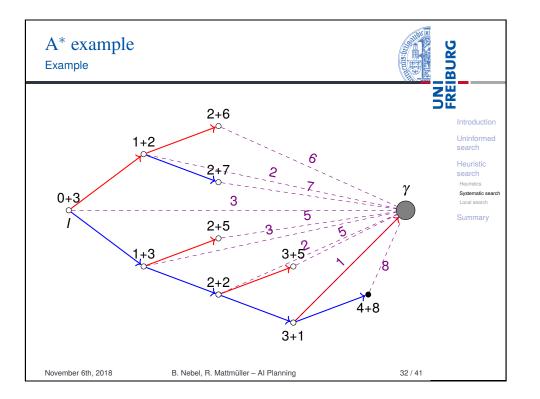
November 6th, 2018

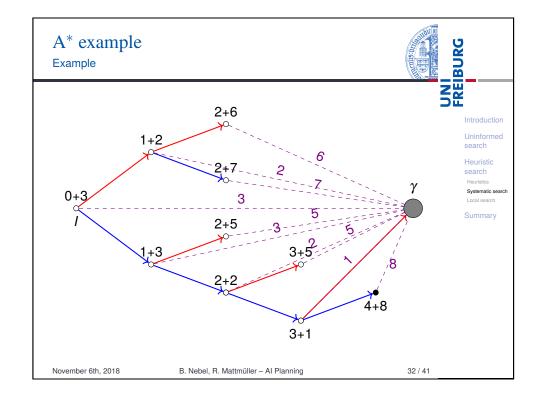
U

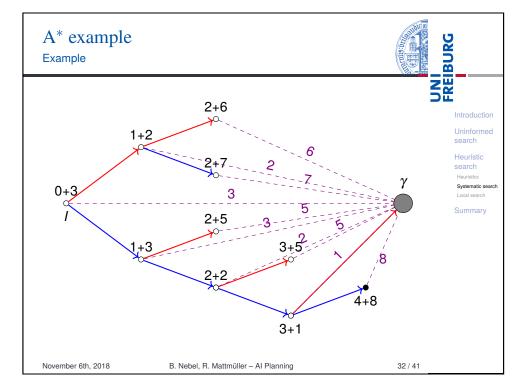
- one of the three most commonly used algorithms for satisficing planning
- complete for safe heuristics (due to duplicate detection)
- suboptimal unless h satisfies some very strong assumptions (similar to being perfect)
- invariant under all strictly monotonic transformations of h (e.g., scaling with a positive constant or adding a constant)

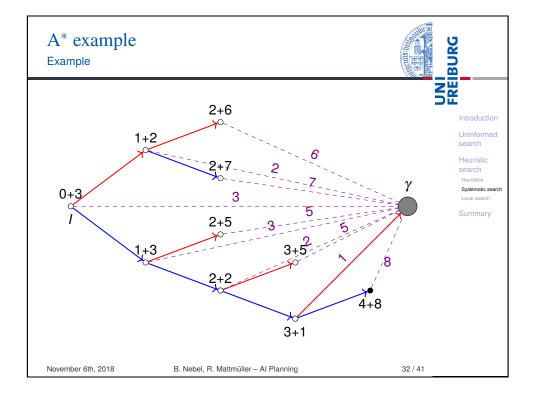
B. Nebel, R. Mattmüller – Al Planning

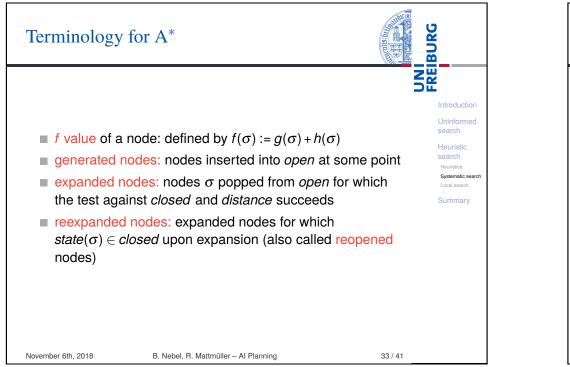
search

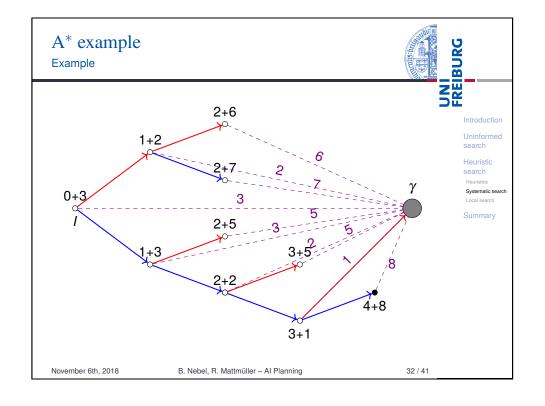

Heuristic

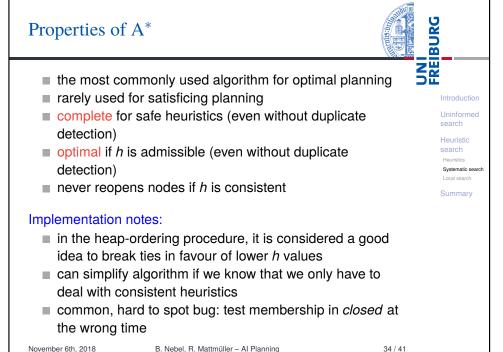

search

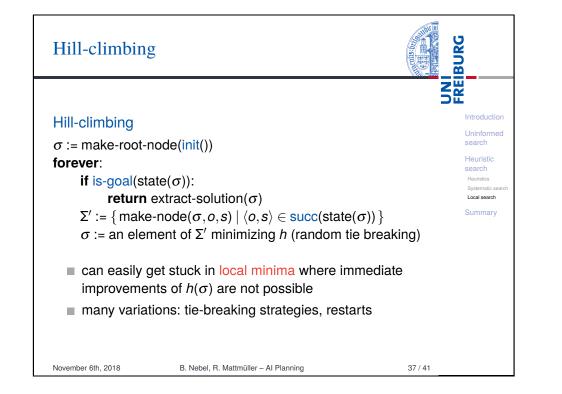

Heuristics Systematic search

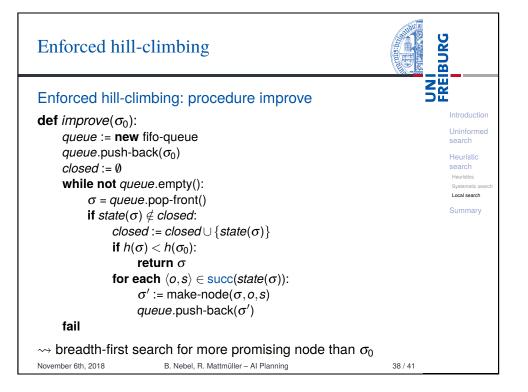

Summary


A*		BURG
A* (with dupli	cate detection and reopening)	PRE
	h-heap ordered by $(\sigma \mapsto g(\sigma) + h(\sigma))$	Introduction
open.insert(mak	e-root-node(init()))	Uninformed search
closed := Ø		Heuristic
distance := ∅		Heuristics
while not open.		Systematic search
$\sigma = open.pc$		Summarv
	closed or $g(\sigma) < distance(state(\sigma))$: = closed $\cup \{ state(\sigma) \}$	Cumitary
distanc	$e(state(\sigma)) := g(\sigma)$	
if is-goa	al(state(σ)):	
ret	urn extract-solution(σ)	
	h $\langle o, s \rangle \in \text{succ}(state(\sigma))$:	
	:= make-node(σ, o, s)	
if /	$\sigma(\sigma') < \infty$: open.insert(σ')	
return unsolvab		
November 6th, 2018	B. Nebel, R. Mattmüller – AI Planning	31 / 41









Weighted A*			BURG
Weighted A* (v	vith duplicate detection and reo	pening)	FRE
open := new min-l	heap ordered by $(\sigma \mapsto g(\sigma) + \mathcal{W} \cdot h(\sigma))$))	Introduction
open.insert(make-		//	Uninformed search
closed := Ø			Heuristic search
distance := \emptyset			Heuristics
while not open.er			Systematic search Local search
	closed or $g(\sigma) < distance(state(\sigma)):$ closed $\cup \{state(\sigma)\}$		Summary
	$(\sigma) := g(\sigma)$		
	$(state(\sigma)):$		
•	rn extract-solution(σ)		
	$\langle o, s \rangle \in \text{succ}(state(\sigma)):$		
	= make-node(σ, o, s)		
if h(σ') < ∞ : open.insert(σ')		
return unsolvable			
November 6th, 2018	B. Nebel, R. Mattmüller – Al Planning	35 / 41	

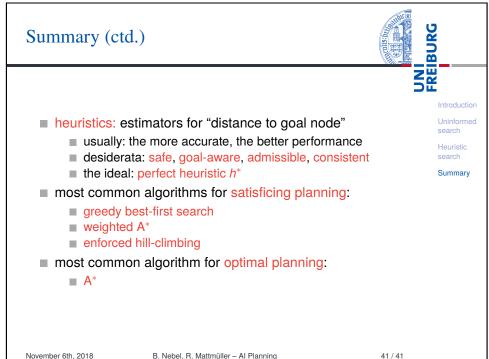
Properties of	weighted A*		BURG
		Z	
The weight $W \in$	$\mathbb{R}^{\scriptscriptstyle +}_0$ is a parameter of the algo	rithm.	Introductio
■ for <i>W</i> = 0, b	ehaves like breadth-first sear	ch	Uninforme search
■ for <i>W</i> = 1, b	ehaves like A*		Heuristic
for $W \to \infty$,	behaves like greedy best-first	t search	Search Heuristics Systematic se Local search
Properties:			Summary
one of the m planning	nost commonly used algorithn	ns for satisficing	
optimal with	an prove similar properties to bounded suboptimal: genera ctor <i>W</i> as long as optimal one	ited solutions are	
November 6th, 2018	B. Nebel, R. Mattmüller – Al Planning	36 / 41	

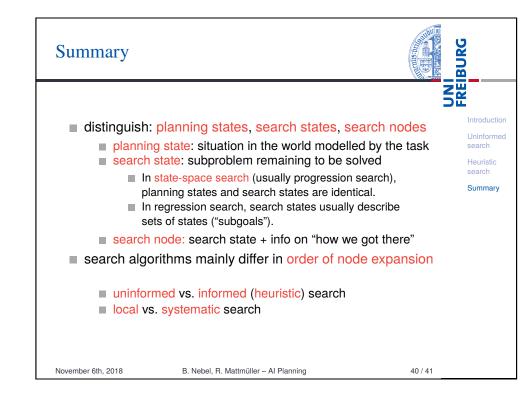
Enforced hill-climbing (ctd.)

Enforced hill-climbing

 $\sigma := make-root-node(init())$ while not is-goal(state(σ)): $\sigma := \operatorname{improve}(\sigma)$ **return** extract-solution(σ)

satisficing planning


BURG UNI REI search Heuristic search Heuristics Systematic sear Local search one of the three most commonly used algorithms for


39/41

- can fail if procedure improve fails (when the goal is unreachable from σ_0)
- complete for undirected search spaces (where the successor relation is symmetric) if $h(\sigma) = 0$ for all goal nodes and only for goal nodes

November 6th, 2018

B. Nebel, R. Mattmüller - Al Planning

