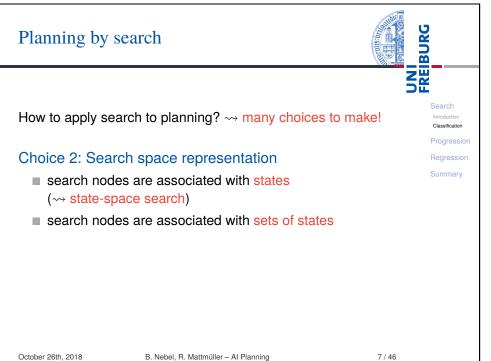
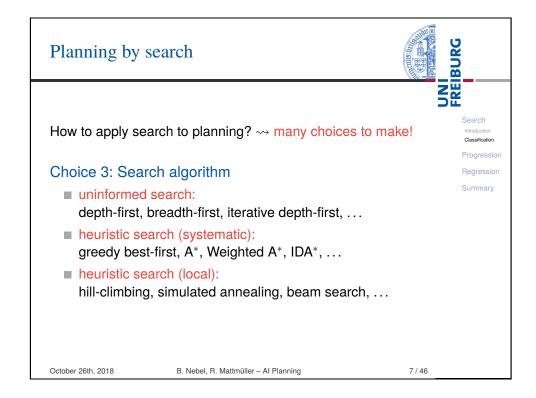
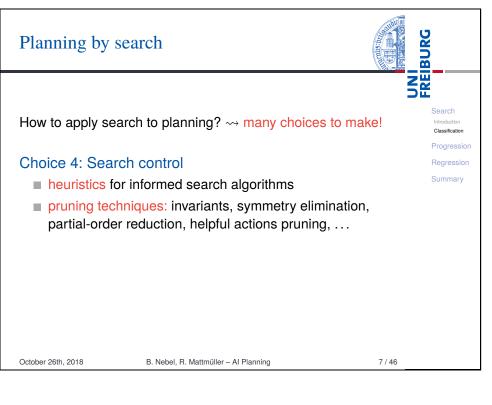
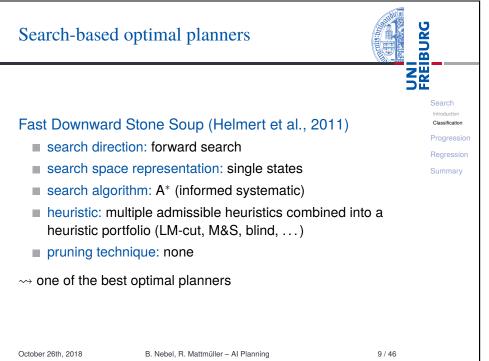


Satisficing or	r optimal planning?	BURG
satisficing p (although s	istinguish two different problems: planning: any solution is OK horter solutions typically preferred nning: plans must have shortest p	i regreceion
 details are almost no c planning ar many probl 	olved by search, but: very different overlap between good techniques ad good techniques for optimal pla ems that are trivial for satisficing p hard for optimal planners	anning
October 26th, 2018	B. Nebel, R. Mattmüller – Al Planning	6 / 46

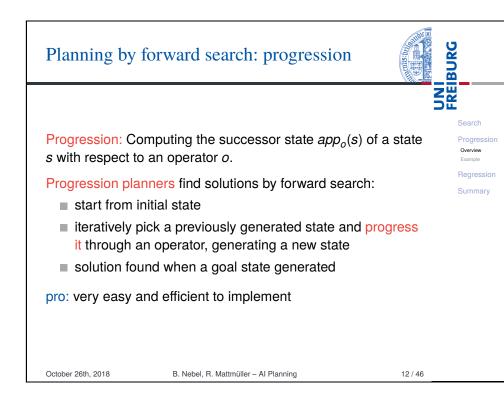


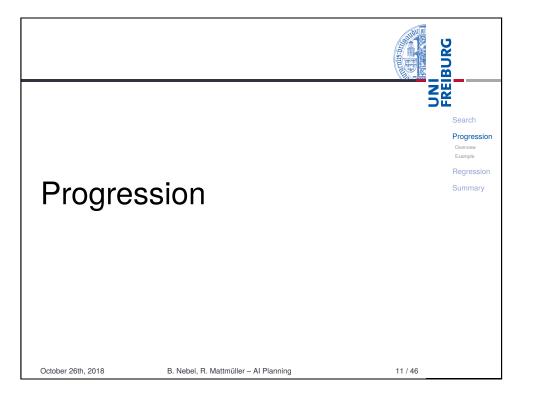


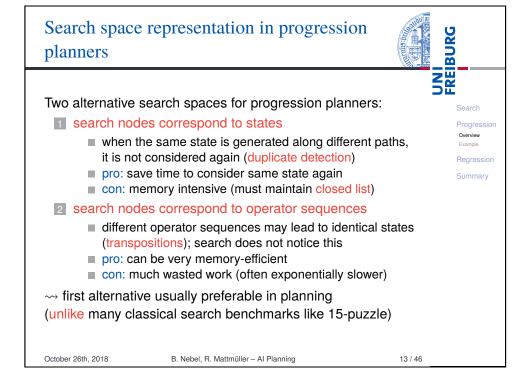


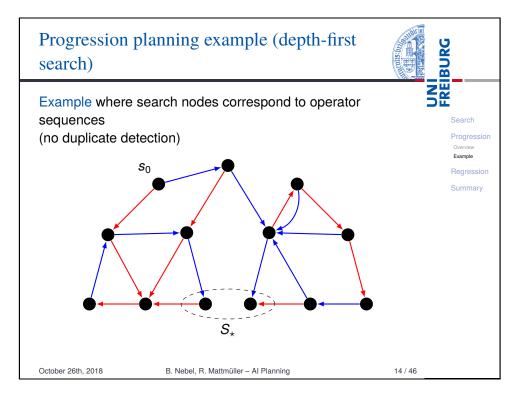


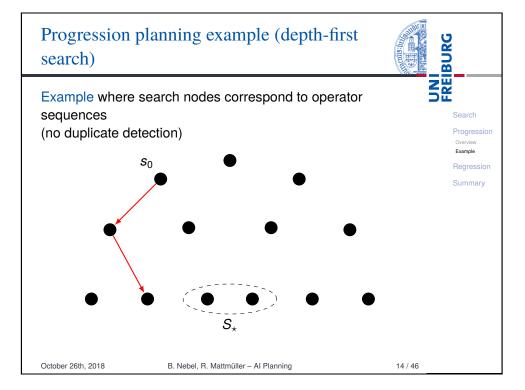




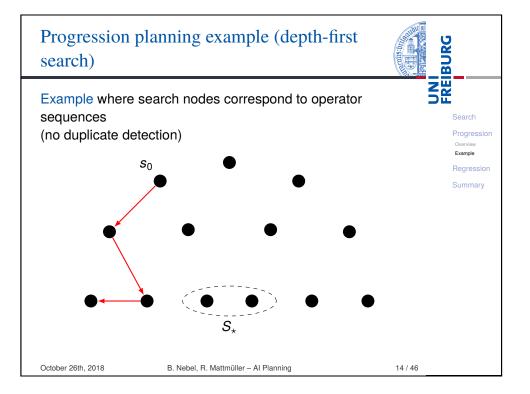


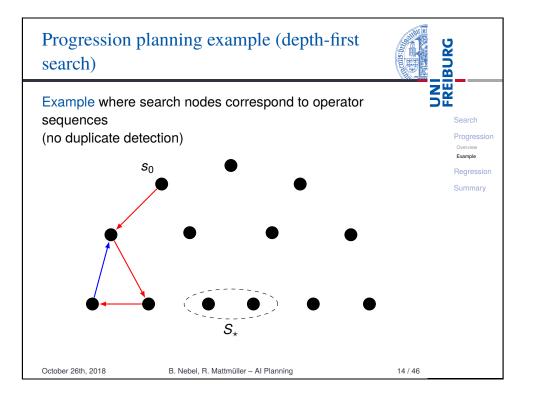


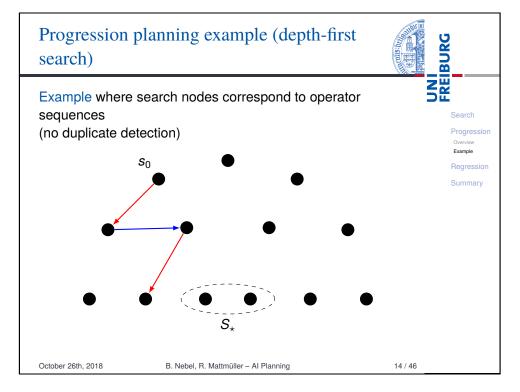


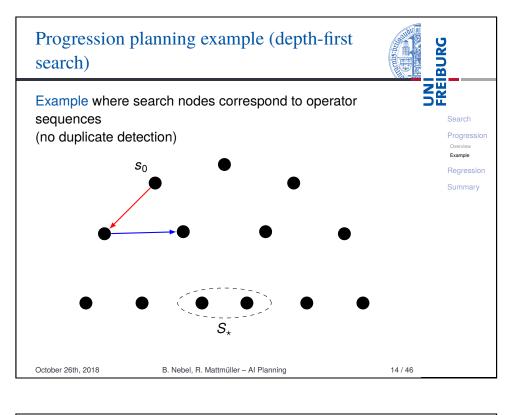


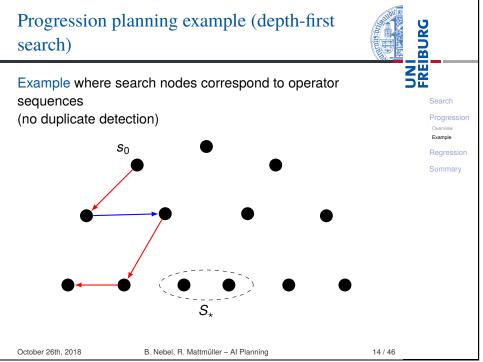
Progression planning example (depth-first search)

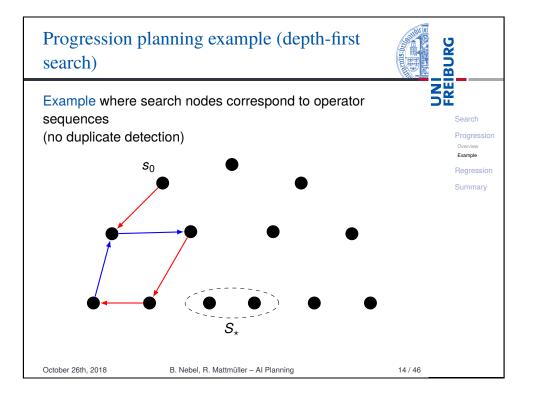


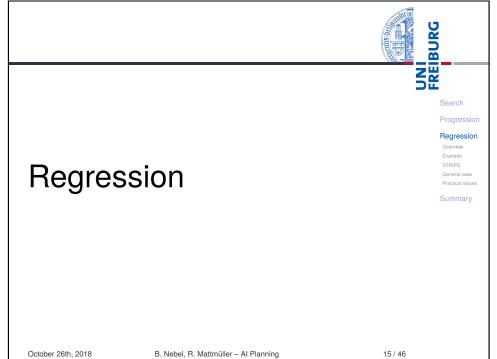


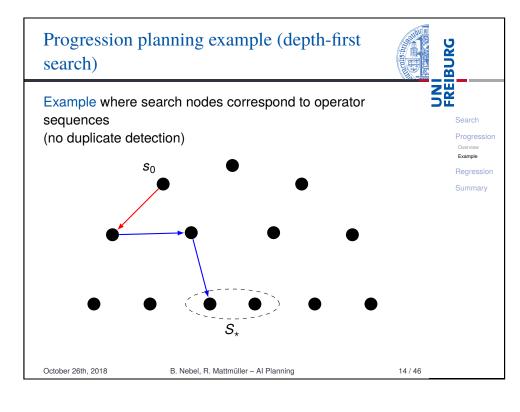


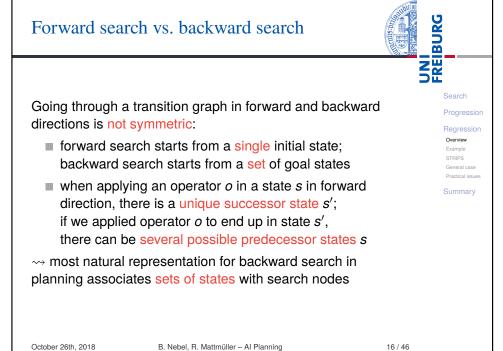












Planning by backward search: regression

17/46

Overview

STRIPS General case

Practical issues

Regression: Computing the possible predecessor states $regr_o(G)$ of a set of states *G* with respect to the last operator *o* that was applied.

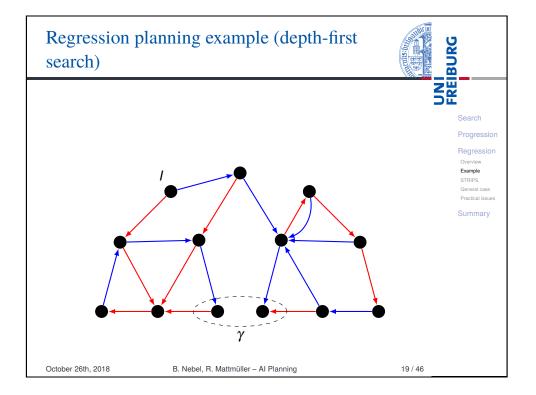
Regression planners find solutions by backward search:

- start from set of goal states
- iteratively pick a previously generated state set and regress it through an operator, generating a new state set
- solution found when a generated state set includes the initial state

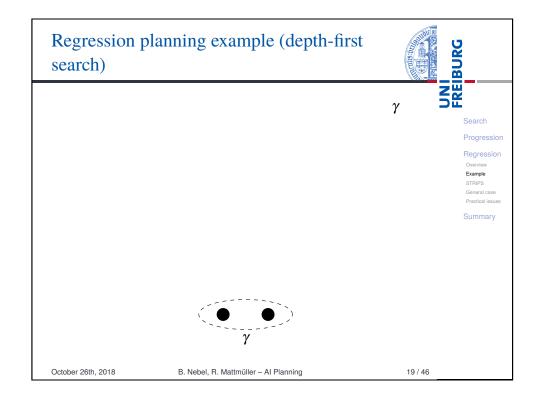
Pro: can handle many states simultaneously Con: basic operations complicated and expensive

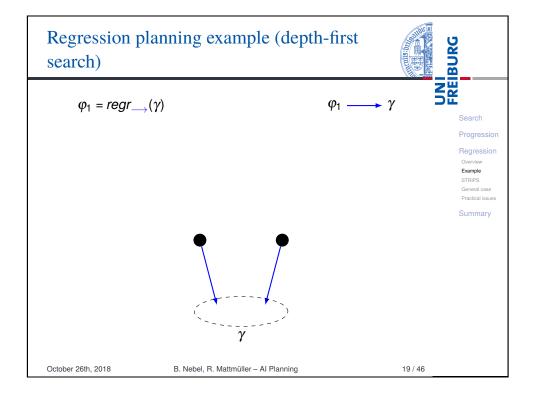
October 26th, 2018

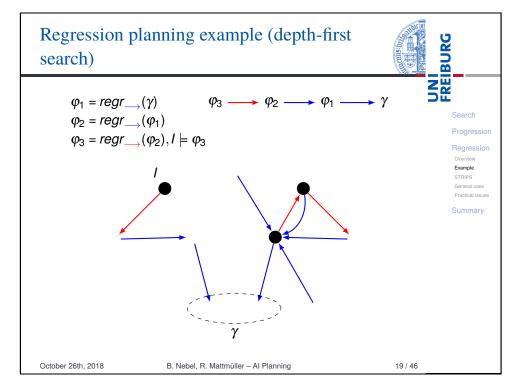
B. Nebel, R. Mattmüller – Al Planning

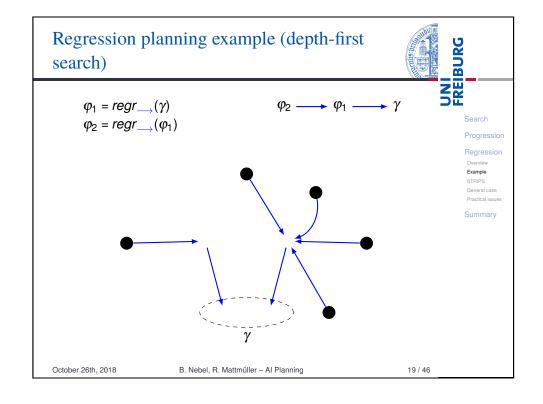


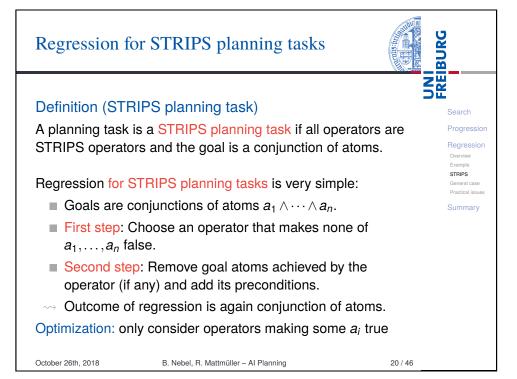
Search space rep planners	presentation in regression	n San San San San San San San San San Sa
 search nodes α each state set i φ represents { 	arch operations like detecting d	Summary
October 26tri, 2018	B. Nebel, K. Mattmuller – Al Planning	18 / 40

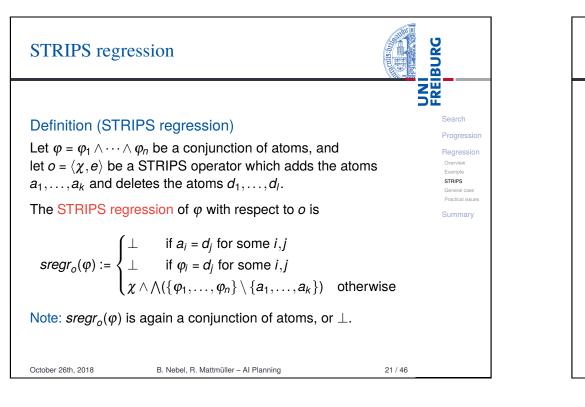


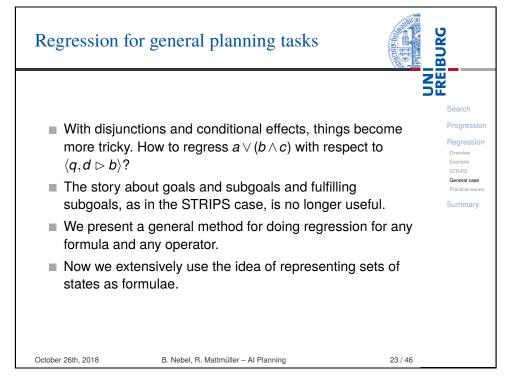


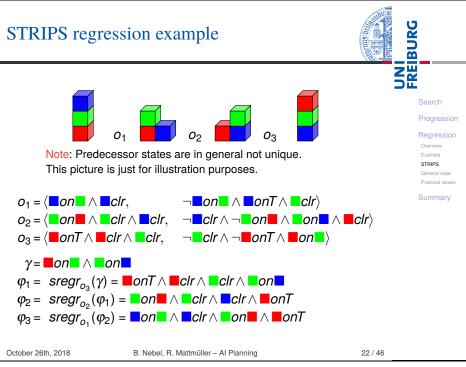


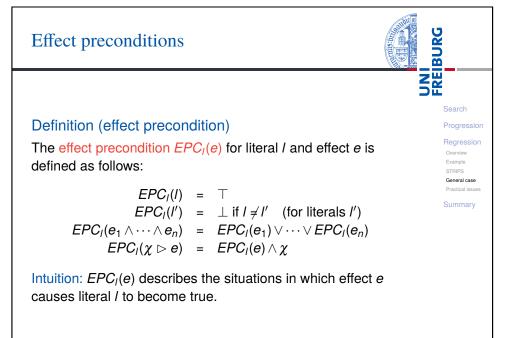




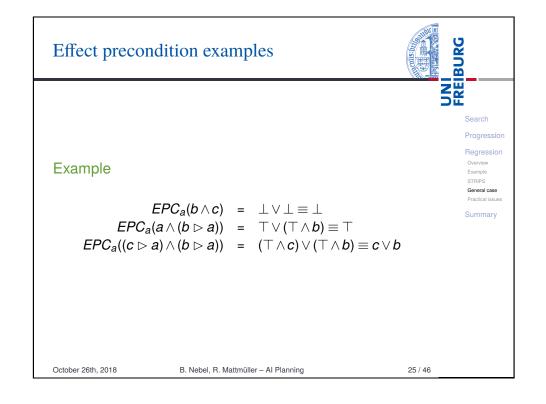


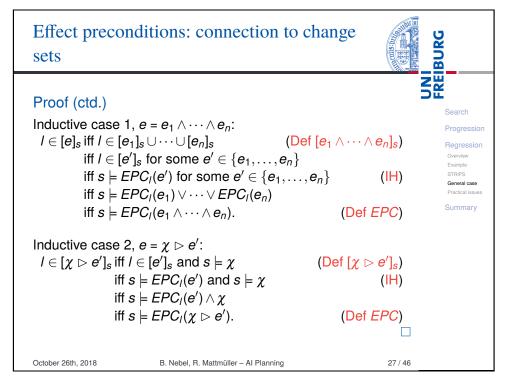






October 26th, 2018





Effect preconditions: connection to change sets

Lemma (A)

Let *s* be a state, *l* a literal and *e* an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect *e*. Base case 1, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides of the equivalence are true. Base case 2, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false.

Effect preconditions: connection to normal
formImage: connection to normal
formRemark: EPC vs. effect normal form
Notice that in terms of $EPC_a(e)$, any operator $\langle \chi, e \rangle$ can be
expressed in effect normal form asSearch
Progression
Conview
Example
stars
General case
Pretical issues $\langle \chi, \bigwedge_{a \in A} ((EPC_a(e) \rhd a) \land (EPC_{\neg a}(e) \rhd \neg a)) \rangle$,Summary

October 26th, 2018

UNI FREIBURG

Search

General case

Practical issue

Regressing state variables

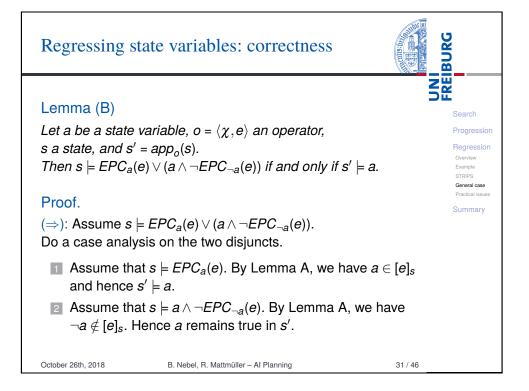
BURG UNI FREI The formula $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ expresses the value of state variable $a \in A$ after applying *o* STRIPS in terms of values of state variables before applying o. General case a became true, or a was true before and it did not become false.

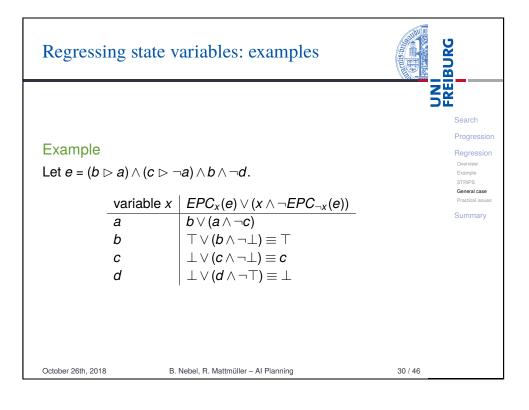
29/46

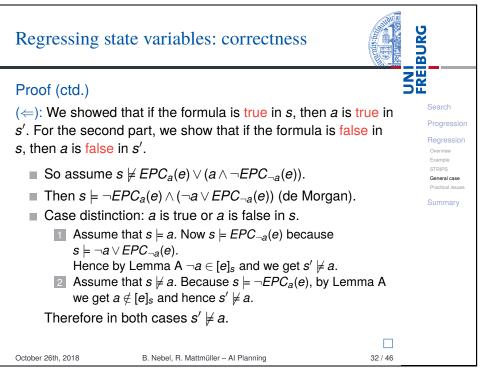
October 26th, 2018

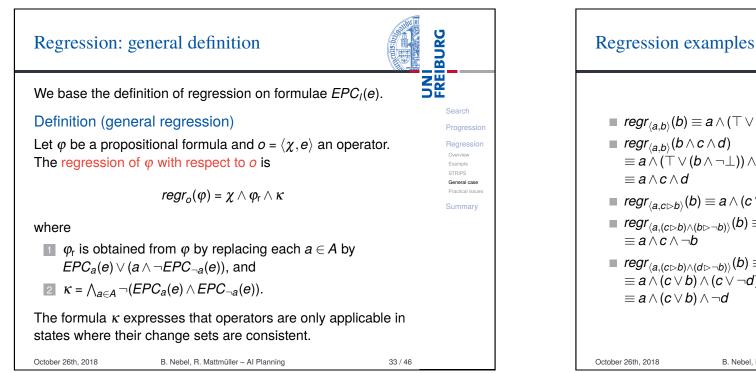
Either:

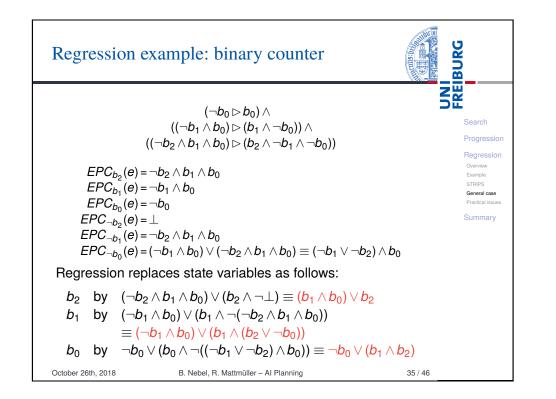
B. Nebel, R. Mattmüller - Al Planning











Theorem (correctness of $regr_{o}(\varphi)$)

Let φ be a formula, o an operator and s a state. Then $s \models regr_{o}(\phi)$ iff o is applicable in s and $app_{o}(s) \models \phi$.

Proof.

Let $o = \langle \chi, e \rangle$. Recall that $regr_o(\varphi) = \chi \land \varphi_r \land \kappa$, where φ_r and κ are as defined previously.

If *o* is inapplicable in *s*, then $s \not\models \chi \land \kappa$, both sides of the "iff" condition are false, and we are done. Hence, we only further consider states s where o is applicable. Let $s' := app_o(s)$.

We know that $s \models \chi \land \kappa$ (because *o* is applicable), so the "iff" condition we need to prove simplifies to:

 $s \models \varphi_r$ iff $s' \models \varphi$. October 26th, 2018 B. Nebel, R. Mattmüller - Al Planning

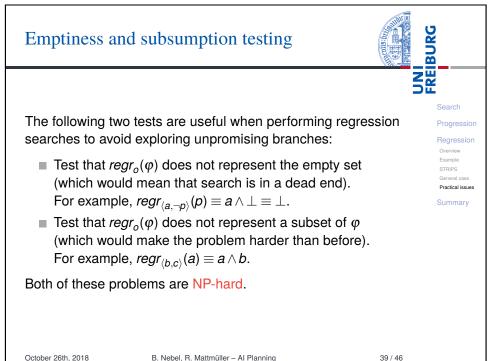
36 / 46

STRIPS

General case

Practical issue

General regr	ession: correctness	
Proof (ctd.)		Search
To show: $s \models \varphi_r$ iff $s' \models \varphi$.		Progression
We show that fo	r all formulae ψ , $s \models \psi_r$ iff $s' \models \psi$, we have $a \models b$ replaced by $EPC_a(e) \lor (a \land \neg Eb)$	etdine
The proof is by a	structural induction on ψ .	Summary
Induction hypot	hesis $s \models \psi_r$ if and only if $s' \models \psi$.	
Base cases	1 & 2 $\psi = \top$ or $\psi = \bot$: trivial, as ψ	$w_r = \psi.$
Base c	ase 3 $\psi = a$ for some $a \in A$: Then $\psi_r = EPC_a(e) \lor (a \land \neg B)$ By Lemma B, $s \models \psi_r$ iff $s' \models$	- ())
October 26th, 2018	B. Nebel, R. Mattmüller – Al Planning	37 / 46



UNI FREIBURG General regression: correctness Proof (ctd.) Inductive case 1 $\psi = \neg \psi'$: $s \models \psi_r$ iff $s \models (\neg \psi')_r$ iff $s \models \neg (\psi'_r)$ iff $s \not\models \psi'_r$ iff (IH) $s' \not\models \psi'$ iff $s' \models \neg \psi'$ iff $s' \models \psi$ Overview Example STRIPS Inductive case 2 $\psi = \psi' \lor \psi''$: General case $s \models \psi_r$ iff $s \models (\psi' \lor \psi'')_r$ iff $s \models \psi'_r \lor \psi''_r$ iff $s \models \psi'_r$ or $s \models \psi''_r$ iff (IH, twice) $s' \models \psi'$ or $s' \models \psi''$ iff $s' \models \psi' \lor \psi''$ iff $s' \models \psi$ Inductive case 3 $\psi = \psi' \land \psi''$: Very similar to inductive case 2, just with \wedge instead of \vee and "and" instead of "or". B. Nebel, R. Mattmüller - Al Planning 38 / 46 October 26th, 2018

