

Motivation	BURG	
	FRE	
	Motivation	
	Effect normal form	
Similarly to normal forms in propositional logic (DNF, CNF	normal form	
NNF,) we can define normal forms for effects, operato	rs _{strips}	
and planning tasks.	Summary	
This is useful because algorithms (and proofs) then only need		
to deal with effects (resp. operators or tasks) in normal for	rm.	
October 19th, 2018 B. Nebel, R. Mattmüller – Al Planning	2 / 21	
	IN IN	
Equivalence of operators and effects	22	
-1	<u>B</u>	
	L S S S S S S S S S S S S S S S S S S S	
Definition (equivalent effects)	Motivation	
Two effects e and e' over state variables A are equivalent	Effect normal form	
written $e \equiv e'$, if for all states <i>s</i> over <i>A</i> , $[e]_s = [e']_s$.	Equivalences	
	Example	

Definition (equivalent operators)

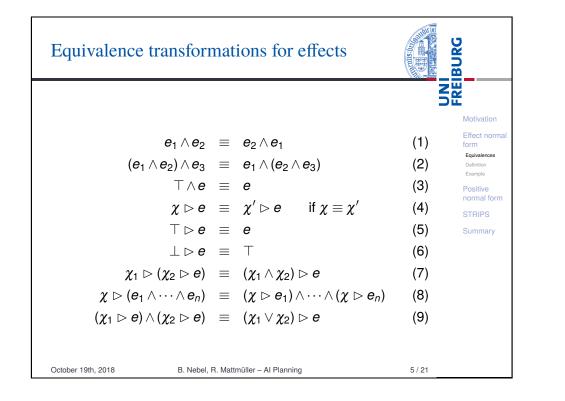
Two operators *o* and *o'* over state variables *A* are equivalent, written $o \equiv o'$, if they are applicable in the same states, and for all states *s* where they are applicable, $app_o(s) = app_{o'}(s)$.

Theorem

Let $o = \langle \chi, e \rangle$ and $o' = \langle \chi', e' \rangle$ be operators with $\chi \equiv \chi'$ and $e \equiv e'$. Then $o \equiv o'$.

B. Nebel, R. Mattmüller - Al Planning

Note: The converse is not true. (Why not?)


4/21

Positive

STRIPS

Summary

normal form

Definition

An operator $\langle \chi, e \rangle$ is in effect normal form (ENF) if for all occurrences of $\chi' \triangleright e'$ in *e* the effect *e'* is either *a* or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in *e*.

normal form STRIPS

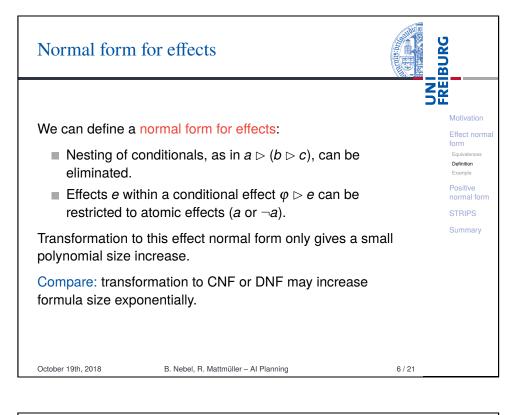
Motivation

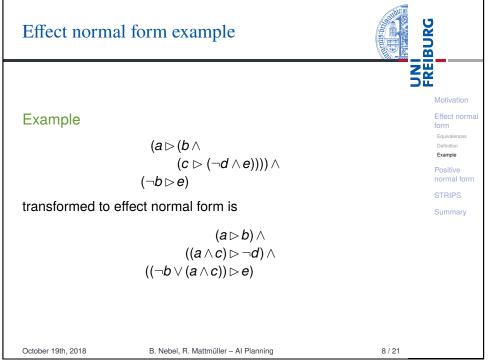
Effect norma

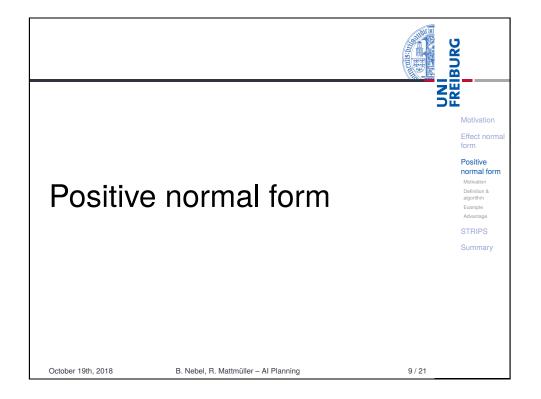
form Equivalence

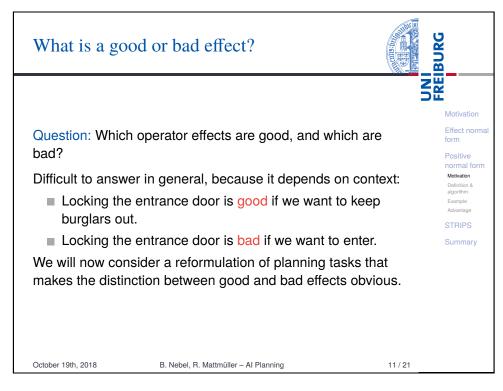
Definition

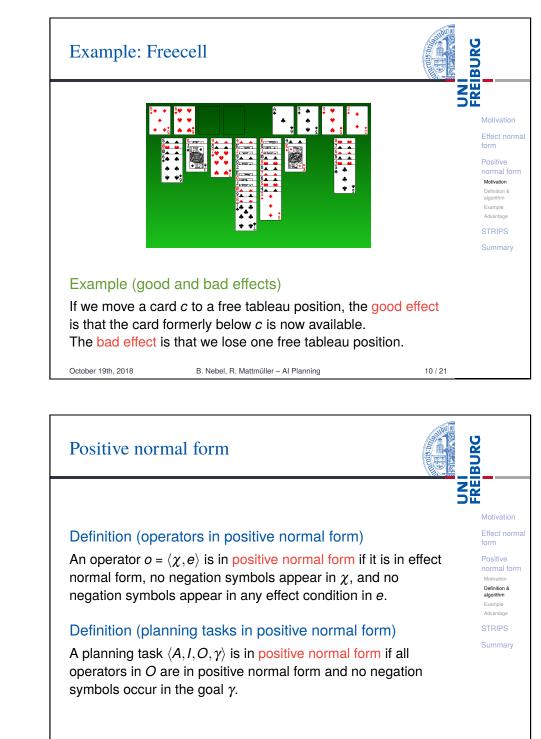
Example


Positive


UNI FREIBURG


Theorem


For every operator there is an equivalent one in effect normal form.


Proof is constructive: we can transform any operator into effect normal form using the equivalence transformations for effects.

Positive normal form: existence

Motivation

Effect norr

Positive

normal forn Motivation

Definition & algorithm Example

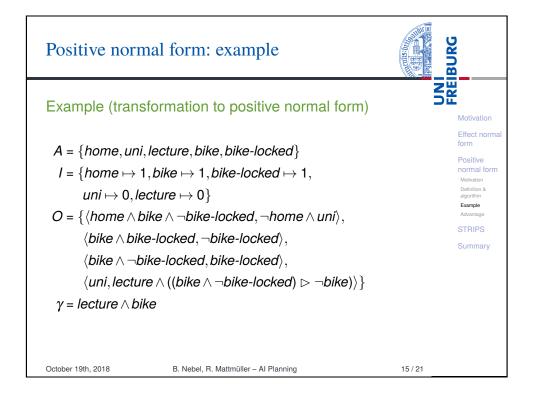
Advantage

Summary

Theorem (positive normal form)

Every planning task Π has an equivalent planning task Π' in positive normal form.

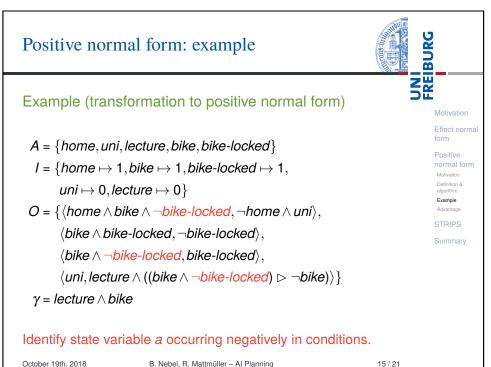
Moreover, Π' can be computed from Π in polynomial time.


Note: Equivalence here means that the represented transition systems of Π and Π' , limited to the states that can be reached from the initial state, are isomorphic.

We prove the theorem by describing a suitable algorithm. (However, we do not prove its correctness or complexity.)

October 19th, 2018

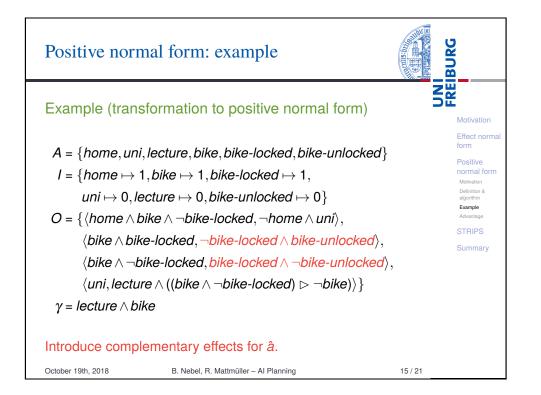
B. Nebel, R. Mattmüller - Al Planning


13/21

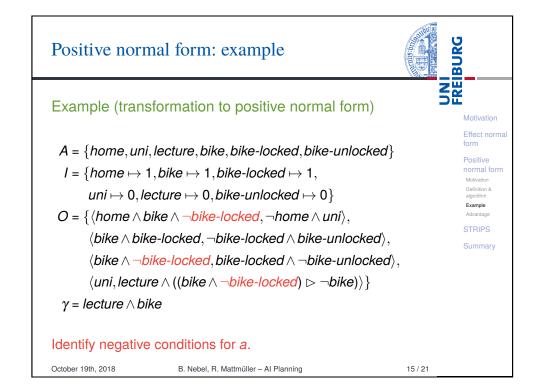
Positive normal form: algorithm	BURG
Transformation of $\langle A, I, O, \gamma \rangle$ to positive normal form Convert all operators $o \in O$ to effect normal form. Convert all conditions to negation normal form (NNF). while any condition contains a negative literal $\neg a$: Let <i>a</i> be a variable which occurs negatively in a condition. $A := A \cup \{\hat{a}\}$ for some new state variable \hat{a} $I(\hat{a}) := 1 - I(a)$ Replace the effect <i>a</i> by $(a \land \neg \hat{a})$ in all operators $o \in O$. Replace the effect $\neg a$ by $(\neg a \land \hat{a})$ in all operators $o \in O$. Replace $\neg a$ by \hat{a} in all conditions. Convert all operators $o \in O$ to effect normal form (again). Here, <i>all conditions</i> refers to all operator preconditions, operator effect conditions and the goal.	Motivation Effect norr form Positive normal forn Motivation Definition & algorithm Example Advantage STRIPS Summary

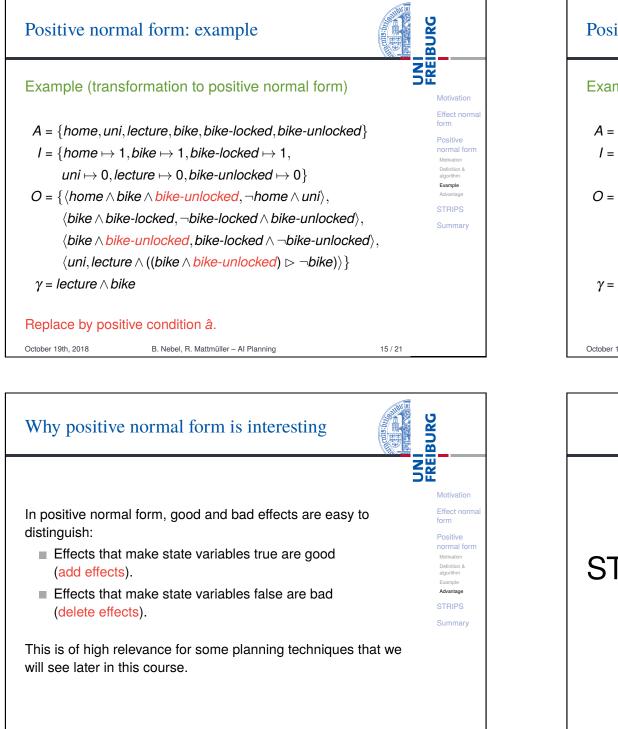
B. Nebel, R. Mattmüller - Al Planning

October 19th, 2018


B. Nebel, R. Mattmüller - Al Planning

15/21


NUT


14/21

Positive normal	form: example	BURG	
Example (transforr	nation to positive normal form	1) Motivation	
$I = \{home \mapsto 1, bik$ $uni \mapsto 0, lectur$ $O = \{\langle home \land bike \land \\ \langle bike \land bike-loc \land \\ \langle bike \land \neg bike-loc \land \\ \langle uni, lecture \land \\ \rangle \gamma = lecture \land bike$	ture, bike, bike-locked, bike-unlocked, bike-unlocked \mapsto 1, bike-locked \mapsto 1, $e \mapsto 0$, bike-unlocked $\mapsto 0$ } $\land \neg$ bike-locked, \neg home \land uni \rangle , cked, \neg bike-locked \rangle , ((bike $\land \neg$ bike-locked) $\triangleright \neg$ bike) \rangle	Positive normal form Definition & algorithm Example Advantage STRIPS Summary }	
Introduce new variable \hat{a} with complementary initial value.			
October 19th, 2018	B. Nebel, R. Mattmüller – Al Planning	15 / 21	

UNI FREIBURG Positive normal form: example Example (transformation to positive normal form) Motivation A = {home, uni, lecture, bike, bike-locked, bike-unlocked} $I = \{home \mapsto 1, bike \mapsto 1, bike - locked \mapsto 1, \}$ normal for Motivation Definition & $uni \mapsto 0$, lecture $\mapsto 0$, bike-unlocked $\mapsto 0$ } algorithm Example $O = \{ \langle home \land bike \land \neg bike \text{-locked}, \neg home \land uni \rangle, \}$ Advantage $\langle bike \land bike - locked, \neg bike - locked \rangle$, Summary $\langle bike \land \neg bike - locked, bike - locked \rangle$, $\langle uni, lecture \land ((bike \land \neg bike-locked) \triangleright \neg bike) \rangle \}$ γ = lecture \wedge bike Identify effects on variable a. October 19th, 2018 B. Nebel, R. Mattmüller - Al Planning 15/21

UNI FREIBURG Positive normal form: example Example (transformation to positive normal form) Motivation A = {home, uni, lecture, bike, bike-locked, bike-unlocked} $I = \{home \mapsto 1, bike \mapsto 1, bike - locked \mapsto 1, \}$ normal for Motivation Definition & $uni \mapsto 0$, lecture $\mapsto 0$, bike-unlocked $\mapsto 0$ } algorithm Example $O = \{ \langle home \land bike \land bike-unlocked, \neg home \land uni \rangle, \}$ Advantage $\langle bike \land bike-locked, \neg bike-locked \land bike-unlocked \rangle$, Summary $\langle bike \land bike-unlocked, bike-locked \land \neg bike-unlocked \rangle$, $\langle uni, lecture \land ((bike \land bike-unlocked) \triangleright \neg bike) \rangle \}$ γ = lecture \wedge bike 15/21 October 19th, 2018 B. Nebel, R. Mattmüller - Al Planning

STRIPS operators

Definition

An operator $\langle \chi, e \rangle$ is a STRIPS operator if

- χ is a conjunction of atoms, and
- e is a conjunction of atomic effects.

Hence every STRIPS operator is of the form

 $\langle a_1 \wedge \cdots \wedge a_n, I_1 \wedge \cdots \wedge I_m \rangle$

where a_i are atoms and l_j are atomic effects.

Note: Sometimes we allow conjunctions of literals as preconditions. We denote this as STRIPS with negative preconditions.

October 19th, 2018

B. Nebel, R. Mattmüller – Al Planning

Transformation to STRIPS

Ator.

Effect norr

Positive normal form

Properties

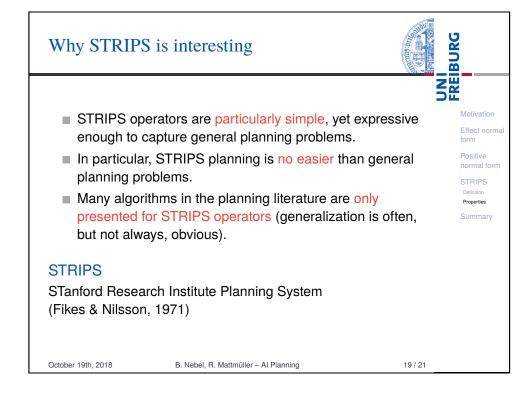
Summarv

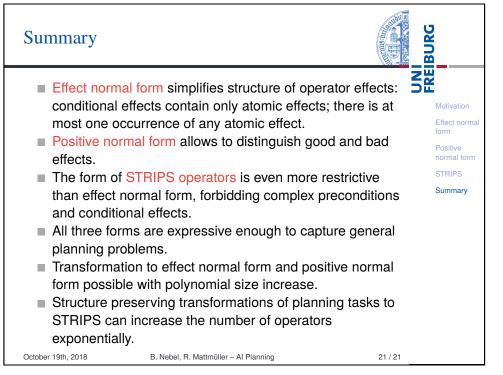
18/21

BURG

UNI FREI N

Motivation


Positive


Definition

normal forn

Not every operator is equivalent to a STRIPS operator.

- However, each operator can be transformed into a set of STRIPS operators whose "combination" is equivalent to the original operator. (How?)
- However, this transformation may exponentially increase the number of required operators. There are planning tasks for which such a blow-up is unavoidable.
- There are polynomial transformations of planning tasks to STRIPS, but these do not preserve the structure of the transition system (e.g., length of shortest plans may change).

20 / 21