Social Robotics

Albert-Ludwigs-Universität Freiburg

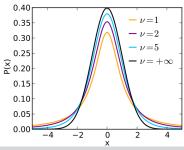
Bernhard Nebel, Felix Lindner, Thorsten Engesser, Barbara Kuhnert, Laura Wächter WS 2017/18

t-Test

- The t-Distribution and the t-Statistics
- One-Sample t-Test
 - Based on a sample of time intervals: Do children spend more time with their toy robot than the target play time of half an hour per day?
- Paired t-Test
 - Based on two dependent samples of time intervals: Do children spend more time with their toy robot after they were told about the robot's capabilities?
- Two-Sample t-Test
 - Based on two independent samples of time intervals: Do older people spend more time with the robot compared to younger people?

If $Z \sim \mathcal{N}(0, 1)$ and $U \sim \chi^2(v)$ are independent random variables, then the variable *T* follows a t-distribution with *v* degrees of freedom:

$$T=rac{Z}{\sqrt{rac{U}{v}}}\sim t_{v}$$
mean: 0, variance: $v/(v-2)$



The t statistics

- Given the mean \overline{X} of a sample of size N drawn from a population with mean μ and standard deviation σ , we already know that $z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{N}}}$ follows a normal standard distribution, $z \sim \mathcal{N}(0, 1)^{\vee}$ (given N is sufficiently large, > 30). It is also known that, if the population is normally distributed, then $u = \frac{(n-1)s^2}{r^2} \sim \chi^2_{n-1}$ see proof https://onlinecourses.science.psu.edu/ stat414/node/174 By definition $\frac{z}{\sqrt{u}} \sim t_{n-1}$, and therefore, also Compare this to z! If we estimate σ by s, we obtain a
 - t-distributed test statistics.

One-Sample t-Test I

- Using t-Test we can lift the assumption that σ is known, because t-Test empowers us to rely merely on s.
- That is, we can test how likely a given sample stems from a population with mean μ (fullstop).

Example

The robotic toy company assumes that children will play $\mu_0 = 100$ minutes per day with the robot on average (H_0). The researchers hypothesize that things will turn out different $\mu \neq \mu_0$ (H_1). Their six-day sample is: 110, 107, 100, 101, 104, 105, $\overline{X} = 104.5, s = 3.73, t = \frac{104.5-100}{\frac{3.73}{\sqrt{6}}} = 2.95.$

One-Sample t-Test II

- **1** As usual, to make a decision whether or not to reject H_0 , we fix an α .
- 2 Then, we check if the calculated t exceeds some critical value:
 - H_1 Undirectional: $t \le t_{n-1;\frac{\alpha}{2}}$ or $t \ge t_{n-1;1-\frac{\alpha}{2}}$

$$\blacksquare H_1 \text{ Less: } t \leq t_{n-1;\alpha}$$

•
$$H_1$$
 Greater: $t \ge t_{n-1;1-\alpha}$

Example continued

We want to test with significance level 5% (i.e., $\alpha = 0.05$). We reject H_0 if $t \le t_{6-1;\frac{0.05}{2}} = -2.57$ or $t \ge t_{6-1;1-\frac{0.05}{2}} = 2.57$. Because our *t*-value is 2.95, H_0 can be rejected in support of H_1 .

Confidence Interval

FREIBURG

■ We can also compute the *p*%-confidence interval for the sample mean, this time using *t* instead of *z*:

$$[\overline{X} - \frac{s}{\sqrt{N}} \times |t_{\frac{(100-p)/100}{2},df}|, \overline{X} + \frac{s}{\sqrt{N}} \times |t_{\frac{(100-p)/100}{2},df}|]$$

Example continued

For the mean \overline{X} = 104.5 with *s* = 3.73, the 95% confidence interval is [100.59, 108.41].

One-Sample t-Test III

Finally, the p-value can be computed:

■ H_1 Undirectional: $P(x \le -|t|) + 1 - P(x \le |t|)$

$$H_1 \text{ Less: } P(x \leq -|t|)$$

$$H_1 \text{ Greater: } 1 - P(x \le |t|)$$

Example continued

The t-Value was 2.95. The probability of some value at least as extreme as 2.95, is $P(x \le -2.95) + 1 - P(x \le 2.95) = 0.032$. In R: p.value = pt(-2.95, df=5) + 1-pt(2.95, df=5).

Cohen's d

- A significant difference need not necessarily be a big difference.
- Cohen's d can be used to compute the effect size: $d = \frac{|X-\mu|}{s}$
- According to Cohen, d between 0.2 and 0.5 is a small effect, a medium effect is between 0.5 and 0.8, and a d above 0.8 counts as a big effect.

Example

Given $\mu = 100$, for the mean $\overline{X} = 104.5$ and s = 3.73, the Cohen's d is d = 4.5/3.73 = 1.2.

Reporting t-Tests

Report

The time children spend with their robotic toy differs significantly from 100 minutes per day (\overline{X} = 104.5, *s* = 3.73, *t*(5) = 2.95, *p* = 0.032, 95% CI [100.59, 108.41], *d* = 1.2).

The t-Test statistics can be used for something more practical than the rather artificial test against a fixed μ : Testing for the difference of paired data. Consider the following setting:

Example

Five children Child-1 to Child-5 are tested for play time change w.r.t. to their robotic toy after they have been told about the robot's capabilities.

	Child-1	Child-2	Child-3	Child-4	Child-5	
Before	10	17	17	15	19	
After	11	25	20	18	22	

	Child-1	Child-2	Child-3	Child-4	Child-5
Before	10	17	17	15	19
After	11	25	20	18	22

- H_1 : Before and After differ $\mu_B \neq \mu_A$, H_0 : There is no difference between Before and After $\mu_B = \mu_A$.
- H_0 can also be written as $\mu_B \mu_A = 0$
- Hence: The data set we actually analyze is $D_i = B_i A_i$:

■ -1, -8, -3, -3,
$$\overline{D} = -3.6$$
, $s_D = 2.61$
■ $t = \frac{\overline{D} - 0}{\frac{s_D}{\sqrt{N}}} = \frac{-3.6}{\sqrt{5}} = -3.084$
■ -3.084 ≤ 2.776 = $t_{4;2.5\%}$
■ $p = P(x \le -3.084) + 1 - P(x \le 3.084) = 0.0367$

Cohen's d for paired t-Test:
$$d = \frac{|\overline{D}|}{s_D}$$

Example

For the mean $\overline{D} = -3.6$ and s = 2.61, the Cohen's d is d = 3.6/2.61 = 1.38.

Note on Assumptions

- The t-Test can be used in case various assumptions are fulfilled:
 - 1 The data is interval-scaled.
 - So that computing \overline{X} and s makes sense.
 - 2 The population is normally distributed.
 - Only in this case, $\frac{(n-1)s^2}{\sigma^2}$ is χ^2_{n-1} -distributed. Also check this useful video: https://www.youtube.com/watch?v=V4Rm4UQHij0
 - For two-sample t-Tests (next), the homogeneity of the variances is additionally assumed.
- It is reported, though, that in simulation studies the t-Test proves very robust against violations of these assumptions.

Example

The robot has been deployed to older people and to younger people. The alternative hypothesis is that there will be a mean difference in time spent with the robot ($H_1 : \mu_1 \neq \mu_2$, $H_0 : \mu_1 = \mu_2$). The two samples look like this:

- **Younger:** 101, 100, 99, 93, 120, 89, 102, $\overline{X}_1 = 100.57, s_1 = 9.78$
- Older: 88, 90, 90, 87, 86, 90, 100, $\overline{X}_2 = 90.14, s_2 = 4.63$
- This time, we cannot proceed like in the paired test, because the scores are independent, and we also allow for different sample sizes.

- Intuitively, if the two means μ_1, μ_2 are equal, as stated by H_0 , then $\overline{X}_1 \overline{X}_2$ should be close to zero.
- Therefore, the t-statistics looks like this: $t = \frac{(\overline{X}_1 \overline{X}_2) 0}{s_{\overline{X}_1 \overline{X}_2}}$, where $s_{\overline{X}_1 - \overline{X}_2}$ is the standard deviation of the sample mean difference.

Two-Sample t-Test: Standard Error of Difference

- How to compute $s_{\overline{X}_1 \overline{X}_2}$?
- From the central limit theorem, we already know that the variances of \overline{X}_i are $\frac{\sigma_i^2}{N_i}$.
- Because the samples are drawn independently, it holds that $\sigma_{\overline{X}_1-\overline{X}_2}^2 = \frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}$.
- Under the assumption that $\sigma_1^2 = \sigma_2^2 = \sigma^2$, we get $\sigma_{\overline{X}_1 \overline{X}_2}^2 = \left(\frac{\sigma^2}{N_1} + \frac{\sigma^2}{N_2}\right)$, hence $\sigma_{\overline{X}_1 \overline{X}_2} = \sqrt{\left(\frac{\sigma^2}{N_1} + \frac{\sigma^2}{N_2}\right)}$ (Standard Error of the Difference)
- Next, we estimate σ^2 by some estimate of the common variance s_{ρ}^2 , and we get $s_{\overline{X}_1 \overline{X}_2} = \sqrt{\left(\frac{s_{\rho}^2}{N_1} + \frac{s_{\rho}^2}{N_2}\right)}$.

- How to compute s_p^2 ?
- We weigh the s_i^2 according to the sample sizes

$$s_{\rho}^2 = \frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{(N_1 - 1) + (N_2 - 1)}$$

The t-statistics then reads

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\left(\frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{(N_1 - 1) + (N_2 - 1)}\right)}{N_1} + \frac{\left(\frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{(N_1 - 1) + (N_2 - 1)}\right)}}} \sim t_{N_1 + N_2 - 2}$$

REIBURG

Note on the case $N_1 = N_2$

As can be easily verified, the t-statistics simplifies to

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2 + s_2^2 + s_1^2}{2}}} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{2(s_1^2 + s_2^2)}{2}}} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2 + s_2^2}{N}}} \sim t_{2N-2} \text{ in case } N_1 = N_2$$

Example

Vounger: 101, 100, 99, 93, 120, 89, 102
$$\overline{X}_1 = 100.57, s_1 = 9.78, s_1^2 = 95.65$$

Older: 88, 90, 90, 87, 86, 90, 100,
$$\overline{X}_2 = 90.14, s_2 = 4.63, s_2^2 = 21.43$$

$$N_1 = N_2 = N = 7, df = 12$$

■ $t = 2.55 \ge t_{12;97.5\%} = 2.18$, H_0 rejected with $\alpha = 0.05$.

REIBURG

Cohen's d

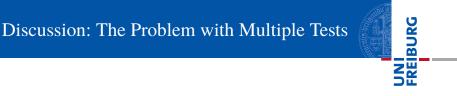
Cohen's d for two-samples t-Test:
$$d = \frac{|\overline{X}_1 - \overline{X}_2|}{\sqrt{\frac{s_1^2 + s_2^2}{2}}}$$

Example

For the means $\overline{X}_1 = 100.57$, $\overline{X}_2 = 90.14$ and $s_1^2 = 95.65$, $s_2^2 = 21.42$, the Cohen's d is d = 10.43/7.65 = 1.36.

- In the derivation of the t-statistics, we assumed that the samples stem from distributions of equal variance. Before R runs a t-Test, this assumption is tested. In case the variances are too different, the Welch-Test is run.
- In Welch test, we have $s_{\overline{X}_1 \overline{X}_2}^2 = \frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}$ instead of $s_{\overline{X}_1 \overline{X}_2}^2 = \frac{s_p^2}{N_1} + \frac{s_p^2}{N_2}$. However, in this case, *t* does not follow a t-distribution anymore.
- It turns out that t can still be used as a test statistics if the degree of freedom is adapted:

$$df_{corr} = \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{s_1^4}{N_1^2(N_1-1)} + \frac{s_2^4}{N_2^2(N_2-1)}}, \text{ just for your information :-)}$$



What if we want to compare more than two samples?

Sketches Intentionally left blank :-)

