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Current State

You know how to look at your data.
You know how to present your data.
You got a first impression how to judge a data point as
extreme or usual using IQR or z-Score.
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The Problem

We face the problem that we want to investigate, whether some
universally quantified statement holds, while we only have
access to a subset of the overall population of entities the
statement is quantifying over. This subset of the population we
have access to is called the sample.

⇒Inferential statistics is about what we can reasonably say
about the population given a sample.
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Statistics vs. Parameters

statistics parameter
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N ∑

N
i Xi µ = 1
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Sampling Distribution of the Sample Mean

The Gist
The sample mean will be approximately normally distributed for
large sample sizes, regardless of the distribution from which we
are sampling.
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Evidence by Simulation

Blue lines: Population mean µ .
Grey Bars: Frequency of sampled means
Red Gaussian: N (µ, σ2

N )
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Mean of the Sampling Distribution of the
Sample Mean

Let X1, . . . ,XN be N independently drawn observations from a
distribution with mean µ and variance σ2. Thus, E[Xi ] = µ for all
i. Let’s derive E[X ], which we call the mean of the sampling
distribution of the sample mean (also written as µX ):

E[X ] = E[
1
N

N

∑
i

Xi ] =
1
N

E[
N

∑
i

Xi ] =
1
N

N

∑
i

E[Xi ] =
1
N

Nµ = µ
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Variance of the Sampling Distribution of the
Sample Mean

Let X1, . . . ,XN be N independently drawn observations from a
distribution with mean µ and variance σ2. Thus, Var[Xi ] = σ2 for
all i. Let’s derive Var[X ], which we call the variance of the
sampling distribution of the sample mean (also written as σ2

X ):

Var[X ] = Var[
1
N

N

∑
i

Xi ] = (
1
N

)2Var[
N

∑
i

Xi ] = (
1
N

)2
N

∑
i

Var[xi ] = (
1
N

)2Nσ
2 =

σ2

N

Hence, the standard deviation of the sampling distribution
of the sample mean is σX = σ√

N
.

σX is also called the Standard Error.
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Summary: Sampling Distribution of the
Sample Mean

X ∼N (µ, σ2

N )
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Application: Condidence Intervals I

Suppose we know the population mean µ and standard
deviation σ .
Can we find boundaries within which we believe the mean
of a sample of size N will fall with 95% probability?
We know how our sample means are distributed, viz.,
X ∼N (µ, σ2

N )
The lower boundary X low will be 1.96 standard errors below
µ , and the upper boundary Xup will be 1.96 standard errors
above µ .
µ−X low = 1.96× σ√

N
⇒X low = µ−1.96× σ√

N
Xup−µ = 1.96× σ√

N
⇒Xup = µ +1.96× σ√

N
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Application: Confidence Intervals II

Suppose we have collected some sample of size N, and we
have computed the X - and s2-statistics.
Can we find boundaries within which we believe the
population mean µ will fall with 95% probability?
We just look from the “sample’s perspective”.
In need of parameters, we estimate N (µ, σ2

N ) by N (X , s2
N )

(which is okay, if N > 30).
The lower boundary Xlow will be 1.96 standard errors below
X , and the upper boundary Xup will be 1.96 standard errors
above X .
X −Xlow = 1.96× s√

N
⇒Xlow = X −1.96× s√

N
Xup−X = 1.96× s√

N
⇒Xup = X +1.96× s√

N
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Means and Confidence Intervals

Red line: Population mean µ

Dots: Sampled Means
Lines through dots: 95% confidence intervals
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Reporting Confidence Intervals

Report
We recorded the number of interactions with our robot per day
for nine days (N = 9). The number of interactions ranged from 35
to 150 (X = 65.11, s = 33.59, 95% CI [43.16,87.05]).

Remember the data 35, 50, 50, 50, 56, 60, 60, 75, 150.
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Application: Hypothesis Testing

The sample mean has a distribution that is normal (for
sufficiently large sample sizes), even when we are sampling
from a distribution that is not normal.
This is useful, because given µ and σ , we can compute the
probability that some sample of size N with mean X stems
from that population!
We already know how we can judge whether some value
from a normal distribution is ‘usual’ or rather ‘extreme’:
z-Scores!
Hence, we can judge a sample mean as ‘usual’ or ‘extreme’
by computing its z-Score.
Let’s see how we can use this for hypothesis testing!
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Very First Hypothesis Test

Suppose you have been deploying a robot (Robo-One) in your
museum. You have recorded the number of interaction for a very
long time, such that you can assume the collected mean and
variance of the number of interactions to be the population mean
µ0 = 40 and standard deviation σ0 = 4. You have now bought a
fancy new version of the robot, viz., Robo-Two. Your Hypothesis
is that Robo-Two will generate much more interactions compared
to Robo-One.

Hypothesis H1: Robo-Two generates more interactions than
Robo-One.
H1 is of type (difference, directional)
Can be written as H1 : µ > µ0, i.e., the population mean for
interactions with Robo-Two (µ) is bigger than the population
mean for interactions with Robo-One (µ0), i.e., people
generally interact more with Robo-Two than with Robo-One.
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Very First Hypothesis Test

The trick of inferential statistics is to first assume that the
negation of H1 is the case, which is called the
Null-Hypothesis, written H0.
Then, we collect the data (viz., our sample)
Subsequently, we show that our sample is so unlikely under
H0 that we are allowed to reject H0 in favor of H1.

In the example: H1 : µ > µ0, H0 : µ ≤ µ0.
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Very First Hypothesis Test

Next, we record the number of interactions of Robo-Two for
16 days (N = 16), and we find a mean X = 42.
Given the population mean and standard deviation µ0 = 40
and σ0 = 4, we know that the sampling distribution of the
sample mean is N (40, 1616 ).
We compute the z-Score to assess how far our sample
mean 42 is from the mean of the sampling distribution of
the sample mean, 40: z = (42−40)/4

4 = (42−40) = 2.
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Very First Hypothesis Test

Thus, observing a sampling mean of at least 42 under the
assumption that the population mean is µ0 = 40 and the
population standard deviation is σ0 = 4 is as probable as
P(z ≥ 2) = 1−P(z < 2) = 0.0228.
Things will become even worse if we consider population
means smaller than µ0. Therefore, if we assume a
significance level of α = 0.05, we have reason to reject H0
in favor of H1.
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Very First Hypothesis Test

Report
The number of interactions with Robo-Two is significantly higher
than the number of interactions with Robo-One
(z = 2.0,p = 0.0228).

Because the hypothesis was directional, we checked if the
z-Score of X was z.95 = 1.65 or higher. The is called a
one-tailed test. The p-Value is just the probability
P(z ≥ 2.0) = 0.0228. This is below the significance level
α = 0.05.
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Second Hypothesis Test

This time, our H1 hypothesis was that there is a difference
between Robo-One and Robo-Two: H1 : µ 6= µ0.
The null-hypothesis then is H0 : µ = µ0.
We will reject H0, if µ is too low or too high. Thus, we split
our 5% significance level into two (2.5% at the lower end,
and 2.5% at the higher end).
We thus check if the z-Value is below z.025 =−1.96 or
above z.975 = 1.96. This is a two-tailed test.
As our z-Score was 2, we will also reject H0 this time.
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Very First Hypothesis Test

Report
The number of interactions with Robo-Two and with Robo-One
differ significantly (z = 2.0,p = 0.044).

Because the hypothesis was non-directional, we compute
the probability to observe a z-Score at least as extreme as
2.0 (in both directions). The probability is thus
P(z ≥ 2.0) + P(z ≤−2.0) = 0.0228+0.0228 = 0.0456. This
is below the significance level α = 0.05.
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Third Hypothesis Test

This time, our H1 hypothesis was that there there will be
less interactions with Robo-Two than with Robo-One:
H1 : µ < µ0.
The null-hypothesis then is H0 : µ ≥ µ0.
We will reject H0 if µ is too low. Thus, we test at the lower
5% tail, viz., if the z-Score is less or equal z.05 =−1.65.
As our z-Score was 2, we will not reject H0.
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Very First Hypothesis Test

Report
The hypothesis H1 stating that the number of interactions with
Robo-Two will be less than with Robo-One was not supported
(z = 2.0,p = 0.9772).

This time we look only at the lower end, thus, we compute
the probability P(z ≤ 2.0) = 0.9772, which clearly is above
the significance level α = 0.05.

Nebel, Lindner, Engesser, Kuhnert, Wächter – Social Robotics 24 / 27



Type-I and Type-II Errors

Our decisions to reject H0 or not are based on probabilities!
We see that our sample would be rather unusual if H0 were
true, thus we reject H0. But it could be that we just had an
unusual sample by chance. If we decide to reject H0
although H0 is actually true, then we commit a Type-I Error.
Using the 5% significance level, we have a 5% chance per
rejected H0 hypothesis that we were wrong.
If we instead reject H1 although H0 is wrong, then we
commit a Type-II Error. This can happen, when there is an
effect in the population, but our sample size was too small
to detect that effect.
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Final Note on z-Test

Note that we have assumed that µ and σ2 are known to us
a-priori, or can be reasonably be approximated in case of a
sufficiently big sample size.
In many applications, we will not be able to enjoy this luxury.
Therefore, we will learn about other test statistics, as well.
But the main idea is the same, most of the time.
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Sketches
Intentionally left blank :-)
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