Dynamic Epistemic Logic

B. Nebel, R. Mattmiiller, T. Engesser University of Freiburg
Winter Semester 2016/2017 Department of Computer Science

Exercise Sheet P3
Due: February 6th, 2017, 20:00

We now want to extend our model checker to be a fully-fledged epistemic planner that can find
standard and implicitly-coordinated (sequential) epistemic plans. For this, we first have to again
slightly adapt the JSON input format specification. Actions receive another field owner specifying
their owner agent. E.g., consider the following action library:

{"altella2whetherp": {"owner": 1,
"domain": ["el", "e2"],
"indist": [[1, "el"], [1, "e2"],
[2’ "el"], [2’ "62"]],
"pre": {"el": "Kip",
"e2": "K1"p"},
"eff": {"ei": "T",
"e2": "T"3},
"designated": ["el", "e2"l},
"a2setq": {"owner": 2,
"domain": ["el"],
"indist": [[1, "el"], [2, "el"]],
"pre": {"el": "p"},
"eff": {"e1i": "q"},
"designated": ["el"]}}

Instead of formulas that we want the model checker to check, we allow a goal formula to be specified
via the field goal in the main JSON object. In the following example, the ellipsis again has to be
replaced with the action library from above:

{"model": {”domain": ["Wl", "W2", "W3"],
"indist": [[1’ llwlll, uw2|l], [2’ IIW2II, IIWSII:I]’
"yal": {npu: ["Wl", nW2n], uqn: []}},
"designated": ["wl", "w2"],
"actionlib": ...,
“goal“: nqn}

Depending on whether or not a goal is specified, your program should run in planning or model
checking mode. For planning mode, the specification of one or more designated worlds is required.
For planning mode, your program should also accept two optional command line arguments. The
first argument specifies the type of the plan to be searched for (standard|implicit), defaulting
to standard. The second argument specifies the agent that does the planning. If no such planning
agent is given, the initial state of the planning task is simply specified by the fields model and
designated. Otherwise, its associated local state for the planning agent is to be used. While your
planner is supposed to only return subjectively optimal (= shortest) plans, actions of the planning
agent are to be preferred over other agents’ actions whenever possible. The resulting plan should
then be outputted as list of actions, e.g. ["altella2whetherp", "a2setq"].



Exercise P3.1 (Implementation, 8 points)

Extend your program with the functionality as described above. In particular, your planner should
be able to find (subjectively) optimal standard and implicitly-coordinated (sequential) plans, and
conform to the own-action-preference of the planning agent, given one is specified. In the case
where no appropriate plan does exist, your program is not required to terminate.

Exercise P3.2 (Examples, 6 points)

(a) Generate JSON specifications for the examples 5 and 6 from the paper http://gki.informatik.
uni-freiburg.de/papers/bolander-etal-dmap2016.pdf. Generate for each of these ex-
amples one instance where the chess piece starts in the center field and one where the chess
piece starts one field left or right of the center. Use them to check that in the implicitly-
coordinated mode, your planner indeed returns subjectively optimal plans.

(b) Devise another interesting planning task for which the length of the shortest implicitly-
coordinated plan is greater than the length of the shortest standard epistemic plan.

Exercise P3.3 (Documentation, 4 points)

Make a short presentation (maximally three or four slides for a five minute talk) describing both
your implementation (discussing its advantages/disadvantages) and your example. Be prepared to
present it in the exercise sessions.


http://gki.informatik.uni-freiburg.de/papers/bolander-etal-dmap2016.pdf
http://gki.informatik.uni-freiburg.de/papers/bolander-etal-dmap2016.pdf

