Dynamic Epistemic Logic

B. Nebel, R. Mattmüller, T. Engesser Winter Semester 2016/2017 University of Freiburg Department of Computer Science

Exercise Sheet 8 Due: December 22th, 2016, 10:00

Exercise 8.1 (Action modalities; 1+1+1+1 points) Consider the following epistemic state and actions:

$$s_{0} = \underbrace{ \textcircled{o}}_{w_{1}: p} \underbrace{ 2}_{w_{2}: \neg p} \bullet$$

$$a_{1} = \underbrace{ \textcircled{o}}_{e_{1}: \langle K_{1}p, \top \rangle} \underbrace{ \textcircled{o}}_{e_{2}: \langle K_{1} \neg p, \top \rangle} a_{2} = \underbrace{ \textcircled{o}}_{e_{1}: \langle p, q \rangle} \bullet$$

Check whether the following formulas hold in s_0 :

- (a) $K_2[a_2]q$
- (b) $K_2 \langle a_2 \rangle q$
- (c) $K_1[a_1]K_2[a_2]q$
- (d) $K_1 \langle a_1 \rangle K_2 \langle a_2 \rangle q$

Exercise 8.2 (Partially observable ontic actions; 2+2+2+2 points)

Let $s_0 = \textcircled{O} w_1 : \neg p$ be a state where it is common knowledge between two agents 1 and 2 that $\neg p$. We now want to define two actions $Maysetp_1$ and $Maysetp_2$, where agent 1, respective agent 2, sets the value of p to \top and the other agent is unaware whether or not this switch from $\neg p$ to p actually occurs (analogously to the *Mayread* actions from last exercise sheet). E.g., one could imagine each agent having a private light switch for a room that both agent cannot observe.

- (a) Define the actions $Maysetp_1$ for agent 1 and $Maysetp_2$ for agent 2.
- (b) Calculate the composition $BothMaysetp = (Maysetp_1; Maysetp_2)$.
- (c) Verify that $s_0 \models [BothMaysetp](K_1p \land K_2p \land \neg K_1K_2p \land \neg K_2K_1p).$
- (d) Let $Maysetp'_2$ be the action where agent 1 is unaware whether or not agent 2 sets the value of p to \top , but the switch actually does not occur. Verify that $s_0 \models [Maysetp_1][Maysetp'_2](K_1p \land \neg K_2p \land \neg K_1 \neg K_2p \land \neg K_2K_1p).$