Dynamic Epistemic Logic

Bernhard Nebel Robert Mattmüller

November 14, 2016

3.5 Principles of Public Announcement Logics

Today, we will prove some valid formulas of the language $\mathcal{L}_{K[]}$ that will ultimately allow us to reduce $\mathcal{L}_{K[]}$ to \mathcal{L}_{K} and get rid of announcement modalities.

Proposition (Functionality). It is valid that $\langle \phi \rangle \psi \rightarrow [\phi] \psi$.

Proof. Let M, s be arbitrary. Assume that $M, s \models \langle \phi \rangle \psi$. This is true if and only if $M, s \models \phi$ and $M|_{\phi}, s \models \psi$. This implies that $M, s \models \phi$ implies $M|_{\phi}, s \models \psi$, i.e., $M, s \models [\phi]\psi$.

This validity raises the question whether the implication in the opposite direction is also valid. However, this is clearly not the case, as the following counterexample shows: Consider a model M with a single state s where atom p is false. Then $M, s \models [p]p$, but $M, s \not\models \langle p \rangle p$.

Proposition (Partiality). $\langle \phi \rangle \top$ is not valid.

Proof. In any epistemic state M, s with M, s $\not\models \phi$, we have M, s $\not\models \langle \phi \rangle \top$.

Proposition (Negation). $[\phi] \neg \psi \leftrightarrow (\phi \rightarrow \neg [\phi] \psi)$ is valid.

Proof. Omitted. Note that the biimplication can be equivalently written as $[\phi] \neg \psi \leftrightarrow (\neg \phi \lor \langle \phi \rangle \neg \psi)$.

Proposition. All of the following are equivalent:

1. $\phi \rightarrow [\phi]\psi$ 2. $\phi \rightarrow \langle \phi \rangle \psi$ 3. $[\phi]\psi$

Proof. We show that (1) and (3) are equivalent. Assume $M, s \models \phi \rightarrow [\phi]\psi$. This holds iff $M, s \models \phi$ implies $M, s \models [\phi]\psi$. This in turn holds iff $M, s \models \phi$ implies $(M, s \models \phi)$ implies $M|_{\phi}, s \models \psi$. This is equivalent to $(M, s \models \phi \text{ and } M, s \models \phi)$ implies $M|_{\phi}, s \models \psi$, which is the same as saying that $M, s \models \phi$ implies $M|_{\phi}, s \models \psi$. This is the definition of $M, s \models [\phi]\psi$. We should now also show that (1) and (2) are equivalent, or that (2) and (3) are equivalent. This is an easy homework exercise, and hence omitted. \Box Proposition. All of the following are equivalent:

1. $\langle \phi \rangle \psi$

2. $\phi \land \langle \phi \rangle \psi$

3. $\phi \wedge [\phi]\psi$

Proof. Clear.

Proposition (Composition). $[\phi][\psi]\chi$ is equivalent to $[\phi \land [\phi]\psi]\chi$.

Proof. For arbitrary M, s, we have $s \in M|_{\phi \land [\phi]\psi}$ iff M, $s \models \phi \land [\phi]\psi$ iff M, $s \models \phi$ and $(M, s \models \phi \text{ implies } M|_{\phi}, s \models \psi)$ iff $s \in M|_{\phi}$ and $M|_{\phi}, s \models \psi$ iff $s \in M|_{\phi}|_{\psi}$. \Box

Let us now study how knowledge changes with announcements. We find that $[\phi]K_a\psi$ is *not* equivalent to $K_a[\phi]\psi$. Here is a counterexample (recall the Hexa model from above): Hexa, $012 \models [1_a]K_c0_a$, but on the other hand, Hexa, $012 \not\models K_c[1_a]0_a$.

Proposition (Knowledge). $[\phi]K_a\psi$ is equivalent to $\phi \to K_a[\phi]\psi$.

Proof. Assume that $M, s \models \phi \rightarrow K_{\alpha}[\phi]\psi$. This holds iff $M, s \models \phi$ implies $M, s \models K_{\alpha}[\phi]\psi$ iff $M, s \models \phi$ implies $(M, t \models \phi \text{ implies } M|_{\phi}, t \models \psi)$ for all t such that $(s, t) \in_{\sim_{\alpha}}$ iff $M, s \models \phi$ implies $(M, t \models \phi \text{ and } (s, t) \in_{\sim_{\alpha}} \text{ implies } M|_{\phi}, t \models \psi)$ for all $t \in S$ iff $M, s \models \phi$ implies $((s, t) \in_{\sim_{\alpha}} \text{ implies } M|_{\phi}, t \models \psi)$ for all $t \in [[\phi]]$ iff $M, s \models \phi$ implies $(M|_{\phi}, s \models K_{\alpha}\psi)$ iff $M, s \models [\phi]K_{\alpha}\psi$. \Box

Proposition (Reduction). All of the following schemas are valid:

- 1. $[\phi]p \leftrightarrow (\phi \rightarrow p)$ for all $p \in P$
- 2. $[\phi](\psi \land \chi) \leftrightarrow ([\phi]\psi \land [\phi]\chi)$
- 3. $[\phi](\psi \rightarrow \chi) \leftrightarrow ([\phi]\psi \rightarrow [\phi]\chi)$

4. $[\phi] \neg \psi \leftrightarrow ([\phi] \rightarrow \neg [\phi] \psi)$

- 5. $[\phi] K_a \psi \leftrightarrow (\phi \rightarrow K_a[\phi] \psi)$
- $6. \ \ [\varphi][\psi]\chi \leftrightarrow [\varphi \land [\varphi]\psi]\chi$

Proof. We already showed (4), (5), and (6). The others are an easy homework exercise. \Box

Note: Using this proposition, one can reduce any $\mathcal{L}_{K[]}$ formula to an \mathcal{L}_{K} formula. This means that both logics are equally expressive, and that we can use \mathcal{L}_{K} theorem provers or model checkers for $\mathcal{L}_{K[]}$ as well.