Dynamic Epistemic Logic

Chapter 2 - Multi agent S5

Axiomatisation and Common knowledge

2.3 Axiomatisation

1- Semantic derivation of valid formulas via Kripke models.
2- Syntatic derivation of valid formulas via axioms.

Modal logic K:

- all instantiations of propositional tautologies (Prop)

- Kal(d = $) = (Kad — Kab) (K)

- From ¢ /\ ¢ — 1, we can infer {p (MP, modus ponens)

- From ¢, we can infer K,¢ (Nec, neccesitation)

Definition 1 Deriwation

Let X be an arbitrary aziomatisation with azioms Ay,, ..., A, and rules Ry,,...,Ruy,
where each rule is of the form "From ¢n,..., 01, infer ¢;". Then a deriwation of a
formula ¢ with X 1s a finite sequence ¢, ..., o of formulas such that:

1) ém = ¢ and

2)every ¢; in the sequence is:
a) either an instance of one of the azioms
b) or else the result of the aplication of one of the rules to formulas in the
sequence that appear before d;

If there is a derivation for ¢ in X, the we write -y ¢ or - ¢ if X is clear.

We say that ¢ is a theorem of X.

Logic Kis only (arbitrary) Kripke models, including models where R; not not neccesarily
reflect knowledge. E.g model M

a

P}t)

Figure 1: Model M,

(M,w1) k= p but,
(M, w;) modelsK,—p

We would like a logic where something like —(p A K,—p) is a theorem.

Semantically, we solved this by requiring epistemic models to have reflexive accessibility
relations (among other requirements).

Syntatically, add axiom K, — o¢.

Additional axioms for S5:

Kad — ¢ (T, truth)

Kad — KoKqd (4, positive introspection)

—Kad — Kqg—=Kqd (5, negative introspection)

Theorem 1 Aziom system K 1s sound and complete w.r.t. the class K of all Kripke
models, i.e. for every formula ¢ in Ly, we have that Fx & ff K E ¢

Similarly, g5 ¢ iff S5 E ¢. ("you can derive ¢ in S5 iff ¢ is valid in all epistemic
Kripke models")

2.4 Common knowledge

Group notions of knowledge:

Recall Egd. Ep satisifes axiom T, but not positive introspection.

Egd — EpEgd is not valid. E.g if agents a and b are both (separately) told that p is
true, E,bp is true but not E,bE,bp.

So, how to model that everybody knows that everybody knows that... that p?

The common knowledge operator!

For B C, Cgd = A, o Egd, where Ejd = EgEp...Egd.

Definition 2 By language Lxc, we refer to the language defined just like Ly, but
with the additional C modality. For a € A, B C A, p € P, we define:

¢ = dlmdld N PIKPICpd
Semantics: As before, using (epistemic) Kripke models.

Definition 3 Let M = (S,R,V) be a Kripke models with agents A and B C A. Then
Re; = Ve Ry
The transitive closure of a relation R is the smallest relation RT s.t. :
1-R C R*
2V z,y,z if (x,y) € RT and (y,z) € RT then also (x,z) € RT
If additionally, (x,x) € Rt Vx, then RT is the reflezive-transitive closure of R, R*.

Definition 4 Let P be a set of atomic propositions, A a set of agents and M =
(S,R,V) an epistemic model and B C A. Then the truth of an LxC formula ¢ in
(M,s) is defined as for Lx, with an additional clause for common knowledge.

(Ms,) = Cpd iff (M,t) = ¢ VYt € S with (s,t) E~g,. (~cy) = Rey)

Example 1 M,w E Cgp
M,w E Capep

Figure 2: Example 1

Additional axioms for common knowledge:

Cg(d —) — (Cgdp — Cp) (Dist)

Cpdp — (& N EpCpd) (Mix)

Cp(d — Egd) — (&b — Cpd) (Ind)

From ¢, infer Cg¢ (Nec)

Together with &5 axioms and rules: sound and complete w.r.t. epistemic models with
common knowledge.

2.5 Model checking

Local MC for L C formulas: Given a finite Kripke model M = (S, R, V), an LxC formulas
¢ and a state s, determine whether s satisfies ¢:

you only care about state s. The rest of S may be given only implicitly.

Global MC for L C formulas: Given a finite Kripke model M C, an LxC formula ¢,
determine the set of states where ¢ is satisified.

We care about all states.

Especially easy if S is given explicitly.

Algorithmically often done semantically.

Idea: For all subformulas { of ¢, determine the sets of states where 1\ is true, in-
ductively from small to large subformulas.

Definition 5 Subformulas
Let ¢ be a formula in the LxC language. Then the set of subf(d) of subformulas is

defined recursively as follows:

subf(p) = p for atomic propositions p € P
subf(~b) = {~d} U subf(d)

subf(d V) = {G Vb } U subf(d) U subf(h)
subf(Kod) = {Kadp} U sudbf(d)

subf(Cgdp) = {Cpdp} U subf(d)

If Y € subf(dp) \ {d} then P is called a proper subformula of ¢.

Definition 6 Let a be an agent and S’ C S. Then the strong preimage of S; w.r.t a

18:
spreimgq(S) ={s € S| for s’ € S with (s,s’) € Ry: s’ € S’}

Notation:
Let [¢] = {s € S|s = ¢} be the set of states where ¢ is true.

MC algorithm
Let M = (S,R,V) be an (epistemic) Kripke model and ¢ € LxC a formula. Let ¢, ...don
be the subformulas of ¢ ordered from small to large. Then:

Algorithm 1 Model checking

switch ¢; do
case p
[p]:= V(p)
case —¢’
[di] =S\ [¢]
case ¢’V "
[bi] = [TUd"]
case ¢’ N\ p”
[di] == [¢TN [d"]
case K.’
[$:i] := spreimga([¢'])
case Cq¢’
Let S] = [[d)/]]
Let Sp = S1 N[pep spreimg(Sy)
ji=1
while §; # §;,1 do
ji=j+1
Sj11 = §; N[Vpep Spreimg(S;)
end while
Then [[d)l]] = Sj—H

Intuition behind the Cgd’ case:

By '] = [Cod]

Example 2 [-Ky,(Kqep A q)] 2

[p] = {S1,S2,S3,Ss, Se}

[[q]] = {SZ) 53) 54) SS) 86}

[Kap] = {$1,S2, S5}

[Ka A q] ={S2,S3}

[[Kb(Kap A q)ﬂ =o

[~Ko(Kap A q)] = {51, S2,S3, S4, Ss, Se}

Figure 3: Example 2

B EH e EE s D e EH s e EH s)

Figure 4: Example 3

Example 3 [Cqpp] ?

[[pﬂ = {s1 y $2y 834 84, S5, S, s7} =5y

Sz = S1 N (spreimgq(S1) N spreimgq(S2))
=51 N0 (S1N{s1,.., 56}
= {81, ..., S¢}

53 = ...= {S], ceey 85}

S4 =853 = [Caop] = {s1,...55}

