Dynamic Epistemic Logic

Chapter 2 - Multi agent S5

Axiomatisation and Common knowledge

2.3 Axiomatisation

1- <u>Semantic</u> derivation of valid formulas via Kripke models.

2- Syntatic derivation of valid formulas via axioms.

Modal logic \mathbf{K} :

- all instantiations of propositional tautologies (Prop)

- $K_a(\phi \rightarrow \psi) \rightarrow (K_a \phi \rightarrow K_a \psi)$ (K)

- From $\phi \land \phi \rightarrow \psi$, we can infer ψ (MP, modus ponens)

- From ϕ , we can infer $K_a \phi$ (Nec, neccesitation)

Definition 1 Derivation

Let \mathcal{X} be an arbitrary axiomatisation with axioms $A_{x_1}, ..., A_{x_n}$ and rules $R_{u_1}, ..., Ru_n$, where each rule is of the form "From $\phi_1, ..., \phi_l$, infer ϕ_j ". Then a derivation of a formula ϕ with \mathcal{X} is a finite sequence $\phi_1, ..., \phi_m$ of formulas such that: 1) $\phi_m = \phi$ and

2) every ϕ_i in the sequence is:

a) either an instance of one of the axioms

b) or else the result of the aplication of one of the rules to formulas in the sequence that appear before φ_i

If there is a derivation for ϕ in \mathcal{X} , the we write $\vdash_{\mathcal{X}} \phi$ or $\vdash \phi$ if \mathcal{X} is clear. We say that ϕ is a theorem of \mathcal{X} .

Logic Kis only (arbitrary) Kripke models, including models where R_i not not neccesarily reflect knowledge. E.g model \mathcal{M}

Figure 1: Model M₂

 $(\mathcal{M}, w_1) \models p$ but, (\mathcal{M}, w_2) modelsK_a¬p We would like a logic where something like $\neg(p \land K_a \neg p)$ is a theorem. Semantically, we solved this by requiring <u>epistemic</u> models to have <u>reflexive</u> accessibility relations (among other requirements). Syntatically, add axiom $K_a \varphi \rightarrow \varphi$. <u>Additional axioms for S5:</u> $K_a \varphi \rightarrow \varphi$ (T, truth) $K_a \varphi \rightarrow K_a K_a \varphi$ (4, positive introspection) $\neg K_a \varphi \rightarrow K_a \neg K_a \varphi$ (5, negative introspection)

Theorem 1 Axiom system K is sound and complete w.r.t. the class \mathcal{K} of all Kripke models, i.e. for every formula ϕ in \mathcal{L}_{K} , we have that $\vdash_{K} \phi$ iff $\mathcal{K} \models \phi$

Similarly, $\vdash_{S5} \phi$ iff $S5 \models \phi$. ("you can derive ϕ in S5 iff ϕ is valid in all <u>epistemic</u> Kripke models")

2.4 Common knowledge

Group notions of knowledge:

Recall $E_B\phi$. E_B satisifes axiom T, but not positive introspection.

 $E_B \phi \rightarrow E_B E_B \phi$ is not valid. E.g if agents a and b are both (separately) told that p is true, $E_a bp$ is true but not $E_a bE_a bp$.

So, how to model that everybody knows that everybody knows that... that p? The common knowledge operator!

For $B \subseteq C_B \phi \equiv \bigwedge_{n=0} E_B^n \phi$, where $E_B^n \phi = E_B E_B \dots E_B \phi$.

Definition 2 By language \mathcal{L}_{KC} , we refer to the language defined just like \mathcal{L}_{K} , but with the additional C modality. For $a \in A$, $B \subseteq A$, $p \in P$, we define: $\phi ::= \phi |\neg \phi| \phi \land \phi | K_a \phi | C_B \phi$

Semantics: As before, using (epistemic) Kripke models.

Definition 3 Let $\mathcal{M} = \langle S, R, V \rangle$ be a Kripke models with agents A and $B \subseteq A$. Then $R_{E_B} = \bigvee_{b \in B} R_b$

The transitive closure of a relation R is the smallest relation R^+ s.t. : $1\text{-}R \subseteq R^+$

2- $\forall x,y,z \text{ if } (x,y) \in \mathbb{R}^+$ and $(y,z) \in \mathbb{R}^+$ then also $(x,z) \in \mathbb{R}^+$

If additionally, $(x, x) \in R^+ \ \forall x$, then R^+ is the reflexive-transitive closure of R, R^* .

Definition 4 Let P be a set of atomic propositions, A a set of agents and $\mathcal{M} = \langle S, R, V \rangle$ an epistemic model and $B \subseteq A$. Then the truth of an $\mathcal{L}_K C$ formula φ in (\mathcal{M}, s) is defined as for \mathcal{L}_K , with an additional clause for common knowledge. $(\mathcal{M}s,) \models C_B \varphi$ iff $(\mathcal{M}, t) \models \varphi \ \forall t \in S$ with $(s, t) \in \sim_{E_{B^*}} (\sim_{C_B}) = R_{C_B})$ Example 1 $\mathcal{M}, w \models C_{ab}p$ $\mathcal{M}, w \not\models C_{abc}p$

Figure 2: Example 1

Additional axioms for common knowledge:

 $\begin{array}{l} C_B(\varphi \rightarrow \psi) \rightarrow (C_B \varphi \rightarrow C_B \psi) \mbox{ (Dist)} \\ C_B \varphi \rightarrow (\varphi \wedge E_B C_B \varphi) \mbox{ (Mix)} \\ C_B(\varphi \rightarrow E_B \varphi) \rightarrow (\varphi \rightarrow C_B \varphi) \mbox{ (Ind)} \\ From \ \varphi, \mbox{ infer } C_B \varphi \mbox{ (Nec)} \end{array}$

Together with S5 axioms and rules: sound and complete w.r.t. epistemic models with common knowledge.

2.5 Model checking

Local MC for $\mathcal{L}_K C$ formulas: Given a finite Kripke model $\mathcal{M} = \langle S, R, V \rangle$, an $\mathcal{L}_K C$ formulas ϕ and a state s, determine whether s satisfies ϕ :

you only care about state s. The rest of S may be given only implicitly.

Global MC for $\mathcal{L}_K C$ formulas: Given a finite Kripke model $\mathcal{M}_K C$, an $\mathcal{L}_K C$ formula ϕ , determine the set of states where ϕ is satisified.

We care about all states.

Especially easy if S is given explicitly.

Algorithmically often done semantically.

Idea: For all subformulas ψ of ϕ , determine the sets of states where ψ is true, inductively from small to large subformulas.

Definition 5 Subformulas

Let φ be a formula in the $\mathcal{L}_K C$ language. Then the set of $\text{subf}(\varphi)$ of subformulas is

 $\begin{array}{l} \mbox{defined recursively as follows:} \\ \mbox{subf}(p) = p \mbox{ for atomic propositions } p \in P \\ \mbox{subf}(\neg \varphi) = \{\neg \varphi\} \cup \mbox{subf}(\varphi) \\ \mbox{subf}(\varphi \lor \psi) = \{\varphi \lor \psi\} \cup \mbox{subf}(\varphi) \cup \mbox{subf}(\psi) \\ \mbox{subf}(K_a \varphi) = \{K_a \varphi\} \cup \mbox{subf}(\varphi) \\ \mbox{subf}(C_B \varphi) = \{C_B \varphi\} \cup \mbox{subf}(\varphi) \end{array}$

If $\psi\in \text{subf}(\varphi)\setminus\{\varphi\}$ then ψ is called a proper subformula of $\varphi.$

Definition 6 Let a be an agent and $S' \subseteq S$. Then the strong preimage of S; w.r.t a is:

 $spreimg_{\mathfrak{a}}(S) = \{s \in S | \text{ for } s' \in S \text{ with } (s,s') \in R_{\mathfrak{a}} \text{: } s' \in S' \}$

Notation:

Let $\llbracket \varphi \rrbracket = \{s \in S | s \models \varphi\}$ be the set of states where φ is true.

MC algorithm

Let $\mathcal{M} = \langle S, R, V \rangle$ be an (epistemic) Kripke model and $\varphi \in \mathcal{L}_K C$ a formula. Let $\varphi_1, ... \varphi_n$ be the subformulas of φ ordered from small to large. Then:

Algorithm 1 Model checking

```
switch \phi_i do
case p
       [\![p]\!] := V(p)
\mathbf{case}\ \neg\varphi'
       [\![\varphi_i]\!] := S \setminus [\![\varphi']\!]
case \varphi' \lor \varphi''
       [\![\varphi_i]\!] := [\![\varphi']\!] \cup [\![\varphi'']\!]
case \phi' \wedge \phi''
      \llbracket \varphi_i \rrbracket := \llbracket \varphi' \rrbracket \cap \llbracket \varphi'' \rrbracket
{\bf case}\;K_{a}\varphi'
       [\![\varphi_i]\!] := spreimg_a([\![\varphi']\!])
\mathbf{case}~C_{\mathfrak{a}}\varphi'
       Let S_1 = \llbracket \varphi' \rrbracket
      Let S_2 = S_1 \cap \bigcap_{b \in B} \text{spreimg}(S_1)
       j:=1
       while S_j \neq S_{j+1} do
              j:=j+1
               S_{j+1} := S_j \cap \bigcap_{b \in B} \text{spreimg}(S_j)
       end while
       Then [\![\varphi_i]\!]:=S_{j+1}
```

Intuition behind the $C_B \varphi'$ case:

$$\begin{split} & \textbf{Example 2} \quad [\![\neg K_b(K_ap \land q)]\!] \ ? \\ & [\![p]\!] = \{S_1, S_2, S_3, S_5, S_6\} \\ & [\![q]\!] = \{S_2, S_3, S_4, S_5, S_6\} \\ & [\![K_ap]\!] = \{S_1, S_2, S_3\} \\ & [\![K_a \land q]\!] = \{S_2, S_3\} \\ & [\![K_b(K_ap \land q)]\!] = \varnothing \\ & [\![\neg K_b(K_ap \land q)]\!] = \{S_1, S_2, S_3, S_4, S_5, S_6\} \end{split}$$

Figure 3: Example 2

Figure 4: Example 3

$$\begin{split} \mathbf{Example \ 3} & [\![C_{ab}p]\!] ? \\ & [\![p]\!] = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\} = S_1 \\ & S_2 = S_1 \cap (\text{spreimg}_a(S_1) \cap \text{spreimg}_a(S_2)) \\ & = S_1 \cap (S_1 \cap \{s_1, ..., s_6\} \\ & = \{s_1, ..., s_6\} \\ & S_3 = ... = \{s_1, ..., s_5\} \\ & S_4 = S_3 = [\![C_{ab}p]\!] = \{s_1, ..., s_5\} \end{split}$$