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Allen’s
Interval
Calculus

Qualitative Temporal Representation and
Reasoning

Often we do not want to talk about precise times:
NLP — we do not have precise time points
Planning — we do not want to commit to time points too early
Scenario descriptions — we do not have the exact times or
do not want to state them

What are the primitives in our representation system?

Time points: actions and events are instantaneous, or we
consider their beginning and ending

Time intervals: actions and events have duration

Reducibility? Expressiveness? Computational costs for
reasoning?
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Motivation

Motivation: Example

Consider a planning scenario for multimedia generation:

P1: Display Picture1

P2: Say “Put the plug in.”

P3: Say “The device should be shut off.”
P4: Point to Plug-in-Picture1.

Temporal relations between events:

P2 should happen during P1
P3 should happen during P1
P2  should happen before or directly precede  P3
P4 should happen during or end together with P2

~+ P4 happens before or directly precedes P3

~+ We could add the statement “P4 does not overlap with P3”
without creating an inconsistency.
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Allen’s Interval Calculus

Allen’s interval calculus: time intervals and binary relations

over them

Time intervals: X = (X~,X*), where X~ and X* are
interpreted over the reals and X~ < X* (~» naive approach)

Relations between concrete intervals, e. g.:

(1.0,2.0) strictly before (3.0,5.5)
(1.0,3.0) meets (3.0,5.5)
(1.0,4.0) overlaps (3.0,5.5)

Which relations are conceivable?
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Intervals and
Relations Between
Them

The base relations

How many ways are there to order the four points of two

intervals?

Relation Symbol | Name
{X,Y) 1 X~ <Xt <Y <Y*} < before
{X,)Y): X~ <X*=Y" <Y*} m meets
{X,Y): X~ <Y <X*<Y*} o overlaps
{X,)Y): X =Y <X*<Y*} s starts
{X,Y): Y <X <X*=Y*} f finishes
{X,Y): Y <X <X'<VY*'} d during
{X,Y): Y =X"<X*=Y*"} = equal

and the converse relations (obtained by exchanging X and Y)

~~ These relations are JEPD.
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The 13 base relations graphically
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Intervals and
Relations Between
Them

Disjunctive descriptions

Assumption: We don’t have precise information about the

relation between X and Y, e.g.:

XoYorXmY

...modelled by sets of base relations (meaning the union of

the relations):
X{o,m}Y

~ 213 imprecise relations (incl. 0 and B)

Example of an indefinite qualitative description:

{X{o,m} Y, Y{m}Z,X{o,m}Z}
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Our example. . . formally Composition of base relations
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. . ,
Outlook 2 Reasoning in Allen’s Interval Calculus
Reasoning in
Allen’s
Using the composition table and the rules about operations N Enforcing path consistency Inenl
omposing Interval alculus
1 1 1 Relations
on rela|t|ons, we can deduce new relations between time NP-Hardness Example
intervals. Th : :
e Continuous Endpoint Class
What would be a systematic approach? Completeness for the CEP Class
How costly is that?
Is that complete?
If not, could it be complete on a subset of the relation
system?
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Constraint propagation: The naive algorithm

Enforcing path consistency using the straight-forward method:
Let Table[i,j] be an array of size n x n (n: number of intervals) in
which we record the constraints between the intervals.

EnforcePathConsistency1(C)

Input: a (binary) CSP C = (V,D,C)
Output: an equivalent, but path consistent CSP C’
repeat
for each pair (i,j),1 <i,j<n
for each k with1 <k <n
Tableli,j] := Tableli,j1 N (Tableli,k] o Table[k,;])
until no entry in Table is changed

~+ needs O(n®) intersections and compositions.
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An O(n®) algorithm

EnforcePathConsistency2(C)

Input: a (binary) CSP C = (V,D,C)
Output: an equivalent, but path consistent CSP C’
Paths(i,j) = {(’a/)k) 1<k < n}U{(k,l,]) 1<k < n}
Queue = J; ; Paths(i,j)
while Queue #0
select and delete (i, k,j) from Queue
T := Table[i,j1N (Table[i, k] o Table[k,j])
if T + Table[i,j]
Table[i,jl:=T
Table[j,i]:=T~"
Queue = Queue U Paths(i,j)
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Enforcing path
consistency

Example for incompleteness

D

Enforcing path
consistency

(£
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NP-hardness

Theorem (Kautz & Vilain)

CSAT is NP-hard for Allen’s interval calculus.

Proof.

Reduction from 3-colorability (original proof using 3Sat).

Let G=(V,E), V ={vy,...,va} be an instance of 3-colorability.
Then we use the intervals {v,...,v,,1,2,3} with the following
constraints:

1 {m} 2
2 {m} 3
vi {m=mn'} 2 VeV

vi {mm <>} v V(v,vy)€EE

This constraint system is satisfiable iff G can be colored with 3
colors.
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Looking for special cases

Idea: Let us look for polynomial special cases. In particular,

let us look for sets of relations (subsets of the entire set of

relations) that have an easy CSAT problem.

Note: Interval formulae X R Y can be expressed as clauses

over atoms of the form aop b, where:
a and b are endpoints X~ ,X*, Y~ and Y* and B G
ope{<,>=<>}L

Example: All base relations can be expressed as unit

clauses.

Lemma

Let m(©) be the translation of © to clause form. © is satisfiable
over intervals iff ©(©) is satisfiable over the rational numbers.
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The Continuous Endpoint Class

Continuous Endpoint Class C: This is a subset of A such that
there exists a clause form for each relation containing only unit
clauses where —(a = b) is forbidden.

Example: All basic relations and {d,o,s}, because
(X {d,0,s}Y) = {X <X* Y <Y* e oo
X~ <YHX >V,
Xt <y*}
X

< < —

Y

<
<

Y
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Why do we have completeness?

The set C is closed under intersection, composition, and
converse (it is a sub-algebra wrt. these three operations on
relations). This can be shown by using a computer program.

Lemma

Each 3-consistent interval CSP over C is globally consistent.

Theorem (van Beek)

Path consistency solves CMIN(C) and decides CSAT(C).

(Proof: Follows from the above lemma and the fact that a
strongly n-consistent CSP is minimal.)

Corollary

A path consistent interval CSP consisting of base relations only

is satisfiable. —Sm
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Helly’s Theorem

Definition
A set M C R" is convex iff for all pairs of points a,b € M, alll
points on the line connecting a and b belong to M.

Completeness for

Theorem (Helly) e G G

Let F be a finite family of at least n+1 convex sets in R". If all
sub-families of F with n+1 sets have a non-empty intersection,
then NF #0.
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Strong n-consistency (2): Instantiating the kth

Strong n-consistency (1) variable

Proof (part 1). Proof (part 2).

The instantiation of the kK — 1 variables X; to (s;, g;) restricts the

We prove the claim by induction over k with k < n. ) >
instantiation of Xj.

Base case: k=1,2,3 +/

. . . Note: Since Rj € C by assumption, these restrictions can be
Induction assumption: Assume strong (k — 1)-consistency (and

expressed by inequalities of the form:

non-emptiness of all re|ations) Completeness for Completeness for
the CEP Class the CEP Class
Induction step: From the assumption, it follows that there is an Si < Xg A g =X A...
instantiation of kK — 1 variables X; to pairs (s;, ;) satisfying the
constraints Rj; between the k — 1 variables. Such inequalities define convex subsets in R2.
We have to show that we can extend the instantiation to any kth . . .
. ~ Consider sets of 3 inequalities (= 3 convex sets).
variable.
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Strong n-consistency (3): Using Helly’s

Outlook
Theorem
Proof (part 3).
Case 1: All 3 inequalities mention only X, (or mention only X;). Then CMIN(C) can be computed in O(n®) time (for n being the
it suffices to consider only 2 of these inequalities (the strongest). number of intervals) using the path consistency algorithm.

Because of 3-consistency, there exists at least 1 common point

satisfying these 2 inequalities. C is a set of relations occurring “naturally” when

observations are uncertain.
Case 2: The inequalities mention X,~ and X/, but do not contain the

inequality X, < X;/. Then there are at most 2 inequalities with the Compltnes o C contains 83 relations (incl. the impossible and the Comptnes o
same variable and we have the same situation as in Case 1. universal relations).

Case 3: The set contains the inequality X, < X/. In this case, only Are there larger sets such that path consistency computes

three intervals (incl. Xx) can be involved and by 3-consistency there minimal CSPs? Probably not.

exists a common point. . . .
Are there larger sets of relations that permit polynomial

~» With Helly’s Theorem, there exists an instantiation satisfiability testing? Yes.
consistent with all inequalities.
~ Strong k-consistency for all k < n. O
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3 A Maximal Tractable Sub-Algebra

The Endpoint Subclass

The ORD-Horn Subclass
Maximality

Solving Arbitrary Allen CSPs
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A Maximal
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The EP-subclass

End-Point Subclass: P C A is the subclass that permits a
clause form containing only unit clauses (a # b is allowed).

Example: all basic relations and {d, o} since
n(X{d,0}Y) = {X <X, Y <Y
X~ <Y X*>Y X Y,
Xt <Y*}
X

“« X+ —

A
Y

Y
Theorem (Vilain & Kautz 86, Ladkin & Maddux 88)
Enforcing path consistency decides CSAT(P).
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The Endpoint
Subolass

The ORD-Horn Subclass

ORD-Horn Subclass: H C A is the subclass that permits a
clause form containing only Horn clauses where only the
following literals are allowed:

a<b,a=b,a#b
—a < b is not allowed!
Example: all R € P and {o,s,f !}:

x(X{o,s,£ 1Y) = { X~ <X*, X~ X,
Y- <Yh YAV
X<y,
X~ <Y XY,
Y- < X' XY,
Xt <Y,
X~ Y VX £y )
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The ORD-Horn
Subclass
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Partial orders: The ORD theory

Let ORD be the following theory:

Vx,y,z: x<yANy<z — x<z (transitivity)

Vx: x <x (reflexivity)
Vx,y: xX<yANy<x — x=y (anti-symmetry)
Vx,y: X=y — x <y (weakening of =)
X,y X=y — ¥y <x (weakening of =).

ORD describes partially ordered sets, < being the ordering
relation.

ORD is a Horn theory
What is missing wrt. dense and linear orders?
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Satisfiability over partial orders

Proposition

Let © be a CSP over H. © is satisfiable over interval
interpretations iff ©1(©) U ORD is satisfiable over arbitrary
interpretations.

The ORD-Horn
Subclass

Proof.

=-: Since the reals form a partially ordered set (i. e., satisfy ORD), this
direction is trivial.

<« Each extension of a partial order to a linear order satisfies all
formulae of the form a < b, a = b, and a # b which have been satisfied
over the original partial order. O
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Complexity of CSAT(H)

Let ORDy @) be the propositional theory resulting from
instantiating all axioms with the endpoints occurring in 7(©).

Proposition
ORD U r(©) is satisfiable iff ORD ze) U 7(©) is so.

Proof idea: Herbrand expansion!

Theorem
CSAT(H) can be decided in polynomial time.

Proof.

CSAT(H) instances can be translated into a propositional Horn theory
with blowup O(n®) according to the previous Prop., and such a theory
is decidable in polynomial time. O

CCPCH with |C|=83, |P|=188, ||=868
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The ORD-Horn
Subclass

Path consistency and the OH-class

Lemma

Let © be a path-consistent set over H. Then

(X{}Y) ¢ © iff ©is satisfiable

Proof idea: One can show that ORDye) U (©) is closed wrt.

positive unit resolution. Since this inference rule is refutation Shs
complete for Horn theories, the claim follows.

Theorem

Enforcing path consistency decides CSAT(H).

~ Maximality of H?
~~ Do we have to check all 8192 — 868 extensions?
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Complexity of sub-algebras

Let S be the closure of S C A under converse, intersection, and
composition (i.e., the carrier of the least sub-algebra generated
by S).

Theorem
CSAT(S) can be polynomially transformed to CSAT(S).

Proof Idea.

All relations in S — S can be modeled by a fixed number of
compositions, intersections, and conversions of relations in S,
introducing perhaps some fresh variables. O

~+ Polynomiality of S extends to 5.
~+ NP-hardness of § is inherited by all generating sets S.
~ Note: H =H.
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Minimal extensions of the H-subclass

A computer-aided case analysis leads to the following result:

Lemma
There are only two minimal sub-algebras that strictly contain H.:
Xy, Xo
Ny = {d,d_1 , o s s ,f} e X
Ny={d"0,0", s £} e,

Maximality

The clause form of these relations contain “proper” disjunctions!
Theorem
CSAT(H U{N;,}) is NP-complete.

Question: Are there other maximal tractable subclasses? -
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“Interesting” subclasses

Interesting subclasses of A should contain all basic relations.

A computer-aided case analysis reveals:

For S D {{B} : B € B} it holds that
SCH, or
N;orNyisin S.

In case 2, one can show: CSAT(S) is NP-complete. B
‘H is the only interesting maximal tractable subclass.

If we include non-interesting subalgebras, there exist exactly

18 tractable classes.
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Relevance?

Theory: & We now know the boundary between
polynomial and NP-hard reasoning problems
along the dimension expressiveness.

Practice: & All known applications either need only P or
they need more than !

Maximality

Backtracking methods might profit from the result by
reducing the branching factor.

~ How difficult is CSAT(.A) in practice?
~+ What are the relevant branching factors?
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Solving general Allen CSPs

Backtracking algorithm using path consistency as a
forward-checking method

Relies on tractable fragments of Allen’s calculus: split
relations into relations of a tractable fragment, and
backtrack over these.

Solving Arbitrary

Refinements and evaluation of different heuristics Alen osPe
Which tractable fragment should one use?
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Branching factors

If the labels are split into base relations, then on average a
label is split into
6.5 relations

If the labels are split into pointizable relations (P), then on
average a label is split into

2.955 relations

If the labels are split into ORD-Horn relations (), then on
average a label is split into

2.533 relations

A difference of 0.422
This makes a difference for “hard” instances.
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Solving Arbitrary
Allen CSPs

Summary

Allen’s interval calculus is often adequate for describing
relative orders of events that have duration.

The satisfiability problem for CSPs using the relations is
NP-complete.

For the continuous endpoint class, minimal CSPs can be
computed using the path-consistency method.

For the larger ORD-Horn class, CSAT is still decided by the
path-consistency method.

Can be used in practice for backtracking algorithms.
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Solving Arbitrary
Allen CSPs

4 Literature
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