Principles of Knowledge Representation and Reasoning Nonmonotonic Reasoning II: Cumulative Logics

UNI FREIBURG

Bernhard Nebel, Stefan Wölfl, and Felix Lindner January 11 & 13, 2016

Introduction

Motivation Properties Derived Rules in **C** Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Introduction

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

- Conventional NM logics are based on (ad hoc) modifications of the logical machinery (proofs/models).
- Nonmonotonicity is only a negative characterization: From $\Theta \triangleright \varphi$, it does not necessarily follow $\Theta \cup \{\psi\} \models \varphi$.
- Could we have a constructive positive characterization of default reasoning?

Introduction

Motivation

Properties Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

- In classical logics, we have the logical consequence relation $\alpha \models \beta$: If α is true, then also β is true.
- Instead, we will study the relation of plausible consequence $\alpha \sim \beta$: If α is all we know, can we conclude β ?
- $\begin{tabular}{ll} \hline \alpha & \sim \beta \end{tabular} \begin{tabular}{ll} \alpha & \wedge \alpha' & \sim \beta \\ \hline \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} \alpha & \wedge \alpha' & \sim \beta \\ \hline \end{tabular} \begin{tabular}{ll} \beta & \alpha & \alpha' & \sim \beta \\ \hline \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} \alpha & \wedge \alpha' & \sim \beta \\ \hline \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} \alpha & \wedge \alpha' & \sim \beta \\ \hline \end{tabular} \begin{tabular}{ll} \begin{tabu}$
- Find rules that characterize $\succ \dots$ For example: if $\alpha \succ \beta$ and $\alpha \succ \gamma$, then $\alpha \succ \beta \land \gamma$.
- Write down all such rules ...
- \blacksquare ... and find a semantic characterization of $\mid \sim !$

Introduction

Motivation

Properties Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Desirable properties: Reflexivity

- **Rationale:** If α holds, this normally implies α .
- Example: Tom goes to a party normally implies that Tom goes to a party.

Reflexivity in default logic

Let $\Delta = \langle D, W \rangle$ be a propositional default theory. Define the relation $\mid_{\sim_{\Delta}}$ as follows:

 $\alpha \vdash_{\Delta} \beta$ means that β is a skeptical conclusion of $\langle D, W \cup \{\alpha\} \rangle$.

Introduction

Motivation

Properties

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Reflexivity in default logic

Let $\Delta = \langle D, W \rangle$ be a propositional default theory. Define the relation $\mid_{\sim_{\Delta}}$ as follows:

 $\alpha \sim \beta$ means that β is a skeptical conclusion of $\langle D, W \cup \{\alpha\} \rangle$.

Proposition

Default logic satisfies Reflexivity.

Proof.

The question is: does α follow skeptically from $\Delta' = \langle D, W \cup \{\alpha\} \rangle$? For each extension *E* of Δ' , it holds $W \cup \{\alpha\} \subseteq E$ (by definition). Hence $\alpha \in E$, and thus α belongs to all extensions of Δ' .

Introduction

Motivation

Properties

Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Desirable properties: Left Logical Equivalence

Left Logical Equivalence (LLE):

$$\frac{\models \alpha \leftrightarrow \beta, \ \alpha \succ \gamma}{\beta \succ \gamma}$$

Rationale: It is not the syntactic form, but the logical content that is responsible for what we conclude normally.

Example: Assume that
 Tom goes or Peter goes normally implies Mary goes.
 Then we would expect that
 Peter goes or Tom goes normally implies Mary goes.

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Introduction

Motivation

Properties Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Proposition

Default logic satisfies Left Logical Equivalence.

Proof.

Assume $\models \alpha \leftrightarrow \beta$ and $\alpha \vdash_{\Delta} \gamma$ (with $\Delta = \langle D, W \rangle$).

Introduction

Motivation

Properties

Derived Rules in C Undesirable

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Proposition

Default logic satisfies Left Logical Equivalence.

Proof.

Assume $\models \alpha \leftrightarrow \beta$ and $\alpha \vdash_{\Delta} \gamma$ (with $\Delta = \langle D, W \rangle$). Hence, γ is in all extensions of $\Delta' := \langle D, W \cup \{\alpha\} \rangle$.

Introduction

Motivation

Properties

Derived Rules in C Undesirable

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Proposition

Default logic satisfies Left Logical Equivalence.

Proof.

Assume $\models \alpha \leftrightarrow \beta$ and $\alpha \models_{\Delta} \gamma$ (with $\Delta = \langle D, W \rangle$). Hence, γ is in all extensions of $\Delta' := \langle D, W \cup \{\alpha\} \rangle$. The definition of extensions is invariant under replacing any formula by an equivalent formula.

Introduction

Motivation

Properties

Derived Rules in C Undesirable

Reasoning

Semantics

Preferential Reasoning

Proposition

Default logic satisfies Left Logical Equivalence.

Proof.

Assume $\models \alpha \leftrightarrow \beta$ and $\alpha \models_{\Delta} \gamma$ (with $\Delta = \langle D, W \rangle$).

Hence, γ is in all extensions of $\Delta' := \langle D, W \cup \{\alpha\} \rangle$.

The definition of extensions is invariant under replacing any formula by an equivalent formula.

Thus, $\langle D, W \cup \{\beta\} \rangle$ has exactly the same extensions as Δ' , and γ is in every one of them. Hence, $\beta \vdash_{\Delta} \gamma$.

Introduction

Motivation

Properties

Derived Rules in C Undesirable

Reasoning

Semantics

Preferential Reasoning

Desirable properties: Right Weakening

Right Weakening (RW):

$$\frac{\models \alpha \rightarrow \beta, \ \gamma \triangleright \alpha}{\gamma \triangleright \beta}$$

Introduction

Motivation

Properties Derived Rules in C

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Desirable properties: Right Weakening

Right Weakening (RW):

$$rac{ert lpha
ightarrow eta, \ \gamma ert \sim lpha}{\gamma ert \sim eta}$$

- Rationale: If something can be concluded normally, then everything classically implied should also be concluded normally.
- Example: Assume that

Mary goes normally implies Clive goes and John goes. Then we would expect that Mary goes normally implies Clive goes.

Introduction

Motivation

Properties Derived Rules in

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Desirable properties: Right Weakening

Right Weakening (RW):

$$rac{ert lpha
ightarrow eta, \ \gamma ert \sim lpha}{\gamma ert \sim eta}$$

- Rationale: If something can be concluded normally, then everything classically implied should also be concluded normally.
- Example: Assume that

Mary goes normally implies Clive goes and John goes. Then we would expect that

Mary goes normally implies Clive goes.

From (Ref) & (RW) Supraclassicality follows:

$$\alpha \vdash \alpha + \frac{\models \alpha \rightarrow \beta, \, \alpha \vdash \alpha}{\alpha \vdash \beta} \implies \frac{\alpha \models \beta}{\alpha \vdash \beta}$$

January 11 & 13, 2016

Nebel, Wölfl, Lindner – KR&R

Introduction

Motivation

Properties Derived Rules in

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Default logic satisfies Right Weakening.

Proof.

Assume $\models \alpha \rightarrow \beta$ and $\gamma \mid \sim_{\Delta} \alpha$ (with $\Delta = \langle D, W \rangle$).

Introduction

Motivation

Properties

Derived Rules in C Undesirable

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Default logic satisfies Right Weakening.

Proof.

Assume $\models \alpha \rightarrow \beta$ and $\gamma \mid_{\sim \Delta} \alpha$ (with $\Delta = \langle D, W \rangle$). Hence, α is in each extension *E* of the default theory $\langle D, W \cup \{\gamma\} \rangle$.

Introduction

Motivation

Properties

Derived Rules in C Undesirable

Reasoning

Semantics

Preferential Reasoning

Default logic satisfies Right Weakening.

Proof.

Assume $\models \alpha \rightarrow \beta$ and $\gamma \models_{\Delta} \alpha$ (with $\Delta = \langle D, W \rangle$). Hence, α is in each extension *E* of the default theory $\langle D, W \cup \{\gamma\} \rangle$. Since extensions are closed under logical consequence, β must also be in each extension of $\langle D, W \cup \{\gamma\} \rangle$.

Introduction

Motivation

Properties

Derived Rules in C Undesirable

Reasoning

Semantics

Preferential Reasoning

Default logic satisfies Right Weakening.

Proof.

Assume $\models \alpha \rightarrow \beta$ and $\gamma \mid_{\sim \Delta} \alpha$ (with $\Delta = \langle D, W \rangle$). Hence, α is in each extension *E* of the default theory $\langle D, W \cup \{\gamma\} \rangle$. Since extensions are closed under logical consequence, β must also be in each extension of $\langle D, W \cup \{\gamma\} \rangle$. Hence, $\gamma \mid_{\sim \Delta} \beta$

Introduction

Motivation

Properties

Derived Rules in C Undesirable

Reasoning

Semantics

Preferential Reasoning

Desirable properties: Cut

- Rationale: If part of the premise is plausibly implied by another part of the premise, then the latter is enough for the plausible conclusion.
- Example: Assume that

John goes normally implies Mary goes.

Assume further that

John goes and Mary goes normally implies Clive goes. Then we would expect that

John goes normally implies Clive goes.

Motivation

Properties Derived Rules in C Undesirable

Reasoning

Semantics

Preferential Reasoning

Cut in default logic

Proposition

Default logic satisfies Cut.

Proof idea.

Assume $\alpha \vdash_{\Delta} \beta$ (with $\Delta = \langle D, W \rangle$). Hence β is contained in each extension of $\Delta' := \langle D, W \cup \{\alpha\} \rangle$. Show that every extension *E* of Δ' is also an extension of $\Delta'' = \langle D, W \cup \{\alpha \land \beta\} \rangle$.

Introduction

Motivation

Properties

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Cut in default logic

Proposition

Default logic satisfies Cut.

Proof idea.

Assume $\alpha \mid \sim_{\Delta} \beta$ (with $\Delta = \langle D, W \rangle$). Hence β is contained in each extension of $\Delta' := \langle D, W \cup \{\alpha\} \rangle$. Show that every extension *E* of Δ' is also an extension of $\Delta'' = \langle D, W \cup \{\alpha \land \beta\} \rangle$.

- Consistency of justifications of defaults is tested against *E* both in the $W \cup \{\alpha\}$ case and in the $W \cup \{\alpha \land \beta\}$ case.
- The preconditions that are derivable when starting from $W \cup \{\alpha\}$ are also derivable when starting from $W \cup \{\alpha \land \beta\}$.
- $W \cup \{\alpha \land \beta\}$ does not allow for deriving further preconditions because also in the $W \cup \{\alpha\}$ case at some point β is derived.

Introduction

Motivation

Properties

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Cut in default logic

Proposition

Default logic satisfies Cut.

Proof idea.

Assume $\alpha \mid \sim_{\Delta} \beta$ (with $\Delta = \langle D, W \rangle$). Hence β is contained in each extension of $\Delta' := \langle D, W \cup \{\alpha\} \rangle$. Show that every extension *E* of Δ' is also an extension of $\Delta'' = \langle D, W \cup \{\alpha \land \beta\} \rangle$.

- Consistency of justifications of defaults is tested against *E* both in the $W \cup \{\alpha\}$ case and in the $W \cup \{\alpha \land \beta\}$ case.
- The preconditions that are derivable when starting from $W \cup \{\alpha\}$ are also derivable when starting from $W \cup \{\alpha \land \beta\}$.
- $W \cup \{\alpha \land \beta\}$ does not allow for deriving further preconditions because also in the $W \cup \{\alpha\}$ case at some point β is derived.

Hence, because γ belongs to all extensions of Δ'' ($\alpha \land \beta \succ \gamma$), it also belongs to all extensions of Δ' ($\alpha \succ \gamma$).

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Introduction

Motivation

Properties

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Desirable properties: Cautious Monotonicity

Cautious Monotonicity (CM):

$$rac{lpha \mathrel{ec} eta, \ lpha \mathrel{ec} \gamma}{lpha \land eta \mathrel{ec} \gamma}$$

Rationale: In general, adding new premises may cancel some conclusions.

However, existing conclusions may be added to the premises without canceling any conclusions!

Example: Assume that

Mary goes normally implies Clive goes and

Mary goes normally implies John goes.

Mary goes and Jack goes might not normally imply that John goes.

However, Mary goes and Clive goes should normally imply

that John goes

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Introduction

Motivation

Properties Derived Rules in

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Cautious Monotonicity in default logic

Proposition

Default logic does not satisfy Cautious Monotonicity.

Proof.

Consider the default theory $\langle D, W \rangle$ with

$$D = \left\{ \frac{a:g}{g}, \frac{g:b}{b}, \frac{b:\neg g}{\neg g} \right\} \text{ and } W = \{a\}.$$

 $E = \text{Th}(\{a, b, g\})$ is the only extension of $\langle D, W \rangle$ and thus both *b* and *g* follow skeptically (i.e., we have $a \sim_{\langle D, \emptyset \rangle} b$ and $a \sim_{\langle D, \emptyset \rangle} g$).

Introduction

Motivation

Properties

Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Cautious Monotonicity in default logic

Proposition

Default logic does not satisfy Cautious Monotonicity.

Proof.

Consider the default theory $\langle D, W \rangle$ with

$$D = \left\{ \frac{a:g}{g}, \frac{g:b}{b}, \frac{b:\neg g}{\neg g} \right\} \text{ and } W = \{a\}.$$

 $E = \text{Th}(\{a, b, g\})$ is the only extension of $\langle D, W \rangle$ and thus both *b* and *g* follow skeptically (i.e., we have $a \mid_{\sim \langle D, \emptyset \rangle} b$ and $a \mid_{\sim \langle D, \emptyset \rangle} g$). For $\langle D, \{a \land b\} \rangle$ also $\text{Th}(\{a, b, \neg g\})$ is an extension, and thus *g* does not follow skeptically (i.e., $a \land b \not\mid_{\sim \langle D, \emptyset \rangle} g$).

Introduction

Motivation

Properties

Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Lemma

Rules (Cut) & (CM) can be equivalently stated as follows: If $\alpha \sim \beta$, then the sets of plausible conclusions from α and $\alpha \wedge \beta$ are identical.

This property is called Cumulativity.

Introduction

Motivation

Properties

Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Lemma

Rules (Cut) & (CM) can be equivalently stated as follows: If $\alpha \sim \beta$, then the sets of plausible conclusions from α and $\alpha \wedge \beta$ are identical.

This property is called Cumulativity.

Proof.

 \Rightarrow : Assume that we may apply both rules (Cut) and (CM) and assume $\alpha \sim \beta$.

Introduction

Motivation

Properties

Derived Rules in (Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Lemma

Rules (Cut) & (CM) can be equivalently stated as follows: If $\alpha \sim \beta$, then the sets of plausible conclusions from α and $\alpha \wedge \beta$ are identical.

This property is called Cumulativity.

Proof.

 \Rightarrow : Assume that we may apply both rules (Cut) and (CM) and assume $\alpha \sim \beta$. Assume further that $\alpha \sim \gamma$.

Introduction

Motivation

Properties

Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

16 / 59

Lemma

Rules (Cut) & (CM) can be equivalently stated as follows: If $\alpha \sim \beta$, then the sets of plausible conclusions from α and $\alpha \wedge \beta$ are identical.

This property is called Cumulativity.

Proof.

 \Rightarrow : Assume that we may apply both rules (Cut) and (CM) and assume $\alpha \sim \beta$. Assume further that $\alpha \sim \gamma$. By applying (CM), we obtain $\alpha \wedge \beta \sim \gamma$.

Introduction

Motivation

Properties

Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Lemma

Rules (Cut) & (CM) can be equivalently stated as follows: If $\alpha \sim \beta$, then the sets of plausible conclusions from α and $\alpha \wedge \beta$ are identical.

This property is called Cumulativity.

Proof.

 \Rightarrow : Assume that we may apply both rules (Cut) and (CM) and assume $\alpha \succ \beta$. Assume further that $\alpha \succ \gamma$. By applying (CM), we obtain $\alpha \land \beta \succ \gamma$.

Similarly, by applying (Cut), from $\alpha \land \beta \succ \gamma$ it follows $\alpha \succ \gamma$.

Introduction

Motivation

Properties

Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Lemma

Rules (Cut) & (CM) can be equivalently stated as follows: If $\alpha \sim \beta$, then the sets of plausible conclusions from α and $\alpha \wedge \beta$ are identical.

This property is called Cumulativity.

Proof.

 \Rightarrow : Assume that we may apply both rules (Cut) and (CM) and assume $\alpha \sim \beta$.

Assume further that $\alpha \succ \gamma$. By applying (CM), we obtain $\alpha \land \beta \succ \gamma$. Similarly, by applying (Cut), from $\alpha \land \beta \succ \gamma$ it follows $\alpha \succ \gamma$. Hence the plausible conclusions from α and $\alpha \land \beta$ are the same.

Introduction

Motivation

Properties

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Lemma

Rules (Cut) & (CM) can be equivalently stated as follows: If $\alpha \sim \beta$, then the sets of plausible conclusions from α and $\alpha \wedge \beta$ are identical.

This property is called Cumulativity.

Proof.

 \Rightarrow : Assume that we may apply both rules (Cut) and (CM) and assume $\alpha \sim \beta$. Assume further that $\alpha \sim \gamma$. By applying (CM), we obtain $\alpha \wedge \beta \sim \gamma$. Similarly, by applying (Cut), from $\alpha \wedge \beta \sim \gamma$ it follows $\alpha \sim \gamma$. Hence the plausible conclusions from α and $\alpha \wedge \beta$ are the same. \Leftarrow : Assume Cumulativity and $\alpha \sim \beta$.

Introduction

Motivation

Properties

Derived Rules in (Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Lemma

Rules (Cut) & (CM) can be equivalently stated as follows: If $\alpha \sim \beta$, then the sets of plausible conclusions from α and $\alpha \wedge \beta$ are identical.

This property is called Cumulativity.

Proof.

 \Rightarrow : Assume that we may apply both rules (Cut) and (CM) and assume $\alpha \sim \beta$.

Assume further that $\alpha \succ \gamma$. By applying (CM), we obtain $\alpha \land \beta \succ \gamma$. Similarly, by applying (Cut), from $\alpha \land \beta \succ \gamma$ it follows $\alpha \succ \gamma$. Hence the plausible conclusions from α and $\alpha \land \beta$ are the same. \Leftarrow : Assume Cumulativity and $\alpha \succ \beta$. Now we can derive both rules (Cut) and (CM).

Introduction

Motivation

Properties

Derived Rules in C Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

System C

1 Reflexivity		Introduction Motivation
	$\overline{\alpha \vdash \alpha}$	Properties Derived Rules in C Undesirable Properties
2 Left Logical Equivalence		Proceeding
	$\models \alpha \leftrightarrow \beta, \ \alpha \models \gamma$	Semantics
	$eta ec \gamma$	Preferential Reasoning
3 Right Weakening	$\frac{\models \alpha \rightarrow \beta, \ \gamma \models \alpha}{\gamma \models \beta}$	Literature
4 Cut	$\frac{\alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \beta, \hspace{0.58em} \alpha \hspace{0.2em}\wedge\hspace{-0.28em}\beta \hspace{0.2em}\mid\hspace{0.58em}\hspace{0.28em} \gamma}{\alpha \hspace{0.28em}\mid\hspace{0.58em}\hspace{0.28em} \gamma}$	
5 Cautious Monotoni	city	
	$\frac{\alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \beta, \hspace{0.58em} \alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma}{\alpha \hspace{0.2em}\wedge\hspace{0.58em} \beta \hspace{0.2em}\sim\hspace{-0.58em}\mid\hspace{0.58em} \gamma}$	BURG

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Derived rules in C

18/59

41 EIBURG

Literature

Cautious Monotonicity:
$$\begin{array}{c} lpha \succ
ho \\ lpha \wedge eta \vdash \gamma \end{array}$$

 $a \mid 0$

$$\alpha \sim \gamma$$

Introduction

Motivation

Properties

Derived Rules in C

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Literature

January 11 & 13, 2016

Literature

January 11 & 13, 2016

		Introduction
Proof (Equivalence)		Motivation
		Properties
Assumption:	$\alpha \sim \beta \beta \sim \alpha \alpha \sim \gamma$	Derived Rules in C
, loodinpiioni	$\alpha \mid p, p \mid \alpha, \alpha \mid f$	Undesirable
Cautious Monotonicity:	$\alpha \wedge \beta \sim \gamma$	Properties
Loft L Equivalance:	$\beta \wedge \alpha \mid_{\alpha \to \alpha}$	Reasoning
Lett L Lyuvalence.	$p \wedge \alpha \mid \circ \gamma$	
		Semantics
Cut:	$\beta \sim \gamma$	Preferential
		Reasoning
Cut:	$\beta \succ \gamma$ \Box	Semantics Preferential Reasoning

Literature

January 11 & 13, 2016

			Introduction
Proof (Equivalence).			Motivation
			Properties
Assumption: Cautious Monotonicity:	$\begin{array}{ccc} \alpha \models \beta, & \beta \models \alpha, & \alpha \models \gamma \\ \alpha \land \beta \models \gamma \\ \end{array}$		Derived Rules in C Undesirable Properties
Left L Equivalence:	$\beta \wedge \alpha \sim \gamma$		rieasoning
			Semantics
Cut:	$eta \succ \gamma$		Preferential Reasoning
			Literature
Proof (And).			
Assumption:	$lpha \models eta, \ lpha \models \gamma$		
	$\boxed{\alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \beta \wedge \gamma}$		IRG
January 11 & 13, 2016	Nebel, Wölfl, Lindner – KR&R	19 / 59	

Proof (Equivalence).	
Assumption:	$lpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} eta, \hspace{0.2em} \beta \hspace{0.2em}\mid\hspace{0.58em} lpha, \hspace{0.2em} lpha \hspace{0.2em}\mid\hspace{0.58em} \gamma$
Cautious Monotonicity:	$\alpha \wedge \beta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma$
Left L Equivalence:	$eta \wedge lpha vert \sim \gamma$
Cut:	$\beta \vdash \gamma$

Proof (And).

$$\begin{array}{c} \alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \beta, \hspace{0.2em} \alpha \hspace{0.2em}\mid\hspace{0.58em} \gamma \\ \text{Cautious Monotonicity:} \hspace{0.2em} \alpha \wedge \beta \hspace{0.2em}\mid\hspace{0.58em} \gamma \end{array}$$

Introduction

Motivation

Properties

Derived Rules in C

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

UNI FREIBURG

19/59

January 11 & 13, 2016

			miroduction
Proof (Equivalence).			Motivation
			Properties
Assumption: Cautious Monotonicity:	$lpha \models eta, \ eta \models lpha, \ eta \models lpha, \ lpha \models lpha$ $lpha \land eta \models \gamma$	γ	Derived Rules in C Undesirable Properties
Left L Equivalence:	$eta \wedge lpha vert \sim \gamma$		Reasoning
Cut	$\beta \sim \gamma$		Semantics
000	P I		Preferential Reasoning
Proof (And)			Literature
propositional logic:	$\alpha \land \beta \land \gamma \models \beta \land \gamma$		ž
January 11 & 13, 2016	Nebel, Wölfl, Lindner – KB&B	19 / 59	

January 11 & 13, 2016

			Introduction
Proof (Equivalence)			Motivation
			Properties
Assumption:	$\alpha \sim \beta, \beta \sim \alpha, \alpha$	$\sim \gamma$	Derived Rules in C
Cautious Monotonicity:	$\alpha \wedge \beta \sim \gamma$		Properties
Left L Equivalence:	$eta \wedge lpha \sim \gamma$		Reasoning
			Semantics
Cut:	$\beta \sim \gamma$		Preferential
			Reasoning
			Literature
Proof (And).			Literature
Supraclassicality:	$ \begin{array}{c} \alpha \land \beta \land \gamma \models \beta \land \gamma \\ \alpha \land \beta \land \gamma \models \beta \land \gamma \end{array} $		Q
January 11 & 13, 2016	Nebel, Wölfl, Lindner – KR&R	19 / 59	

Proof (Equivalence).	
Assumption: Cautious Monotonicity: Left L Equivalence:	$egin{aligned} lpha &ec eta, \ \ eta &ec lpha, \ \ lpha &ec lpha \\ lpha &\wedge eta &ec lpha \\ eta &\wedge eta &ec lpha \\ eta &\wedge lpha &ec lpha \end{aligned}$
Cut:	$\beta \succ \gamma$

Proof (And).

$$\begin{array}{c} \alpha \land \beta \succ \gamma \\ \alpha \land \beta \land \gamma \succ \beta \land \gamma \\ \alpha \land \beta \succ \beta \land \gamma \end{array}$$

Introduction

Motivation

Properties

Derived Rules in ${\bf C}$

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

19/59

UNI FREIBURG

			Introduction
Proof (Equivalence)			Motivation
			Properties
Assumption:	$\alpha \sim \beta \beta \sim \alpha \alpha$	$\sim \gamma$	Derived Rules in C
	$\alpha \mid \rho, \rho \mid \alpha, \alpha$	1 4	Undesirable
Cautious Monotonicity:	$\alpha \land \beta \succ \gamma$		rioperues
Left L Equivalence:	$\beta \wedge \alpha \sim \gamma$		Reasoning
			Semantics
Cut	$\beta \sim \gamma$		Comanico
Out.	$P \vdash I$		Preferential
			Reasoning
Proof (And).			Literature
	$\alpha \sim \beta$		
	, ,		
	$\alpha \land p \sim p \land \gamma$		
Cut:	$lpha \succ eta \wedge \gamma$		(3
			ľ.
January 11 & 13, 2016	Nebel, Wölfl, Lindner – KB&B	19 / 59	25

January 11 & 13, 2016

Proof (Equivalance)

Assumption:	$lpha \models eta, \ eta \models lpha, \ lpha \models \gamma$
Cautious Monotonicity:	$lpha \wedge eta \models \gamma$
Left L Equivalence:	$eta \wedge lpha vert \sim \gamma$
Out	
Cut:	$P \sim \gamma$

Proof (And).

Assumption:	$lpha \mathrel{ee} eta, \ lpha \mathrel{ee} \gamma$	
Cautious Monotonicity:	$\alpha \wedge \beta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma$	
propositional logic:	$\alpha \land \beta \land \gamma \models \beta \land \gamma$	
Supraclassicality:	$lpha \wedge eta \wedge \gamma \triangleright eta \wedge \gamma$	
Cut:	$lpha \wedge eta ert \sim eta \wedge \gamma$	
Cut:	$\alpha \sim \beta \wedge \gamma$	C

Introduction

Motivation

Properties

Derived Rules in C

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

19 / 59

UNI FREIBURG

Proof (Equivalance)

Assumption:	$lpha \models eta, \ eta \models lpha, \ lpha \models \gamma$
Cautious Monotonicity:	$lpha \wedge eta \models \gamma$
Left L Equivalence:	$eta \wedge lpha vert \sim \gamma$
Out	
Cut:	$P \sim \gamma$

Proof (And).

Assumption:	$lpha \mathrel{{\mid}\sim} eta, \hspace{0.2cm} lpha \mathrel{{\mid}\sim} \gamma$
Cautious Monotonicity:	$\alpha \wedge \beta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma$
propositional logic:	$\alpha \land \beta \land \gamma \models \beta \land \gamma$
Supraclassicality:	$lpha \wedge eta \wedge \gamma vert \sim eta \wedge \gamma$
Cut:	$lpha \wedge eta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} eta \wedge \gamma$
Cut:	$lpha \sim eta \wedge \gamma$
MPC is an exercise.	

Introduction

Motivation

Properties

Derived Rules in C

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

NI Reiburg

19/59

January 11 & 13, 2016

Undesirable properties: Monotonicity and Contraposition

Monotonicity:

$$\frac{\models \alpha \rightarrow \beta, \ \beta \models \gamma}{\alpha \models \gamma}$$

 Example: Let us assume that John goes normally implies Mary goes. Now we will probably not expect that John goes and Joan (who is not in talking terms with Mary) goes normally implies Mary goes.

Contraposition:

$$\frac{\alpha \mathrel{\sim} \beta}{\neg \beta \mathrel{\sim} \neg \alpha}$$

 Example: Let us assume that John goes normally implies Mary goes.
 Would we expect that Mary does not go normally implies John does not go?
 What if John goes always?

Introduction

Motivation

Properties

Derived Rules in

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

20 / 59

BURG

Undesirable properties: Monotonicity

Undesirable properties: Contraposition

Undesirable properties: Transitivity & EHD

Transitivity:

$$\frac{\alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \beta, \beta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma}{\alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma}$$

- Example: Let us assume that John goes normally implies Mary goes and Mary goes normally implies Jack goes.
 Now, should John goes normally imply that Jack goes?
 What, if John goes very seldom?
- Easy Half of the Deduction Theorem (EHD):

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Undesirable properties: Transitivity

Undesirable properties: EHD

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Introduction

Motivation

Properties

Derived Rules in C

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

REIBURG

26/59

January 11 & 13, 2016

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

• $\alpha \mathrel{\sim} \beta
ightarrow \gamma$ (assumption)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

REIBURG

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \mathrel{\sim} \beta
 ightarrow \gamma$ (assumption)
- $\alpha \land \beta \models \beta
 ightarrow \gamma$ (Monotonicity)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \mathrel{\sim} \beta
 ightarrow \gamma$ (assumption)
- $\alpha \land \beta \models \beta
 ightarrow \gamma$ (Monotonicity)
- $\alpha \wedge \beta \models \alpha \wedge \beta$ (Ref)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \mathrel{\sim} \beta
 ightarrow \gamma$ (assumption)
- $\alpha \land \beta \models \beta
 ightarrow \gamma$ (Monotonicity)
- $\alpha \wedge \beta \models \alpha \wedge \beta$ (Ref)
- $\alpha \wedge \beta \models \beta$ (RW)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \mathrel{\sim} \beta \mathrel{
 ightarrow} \gamma$ (assumption)
- $\alpha \land \beta \models \beta
 ightarrow \gamma$ (Monotonicity)
- $\alpha \land \beta \models \alpha \land \beta$ (Ref)
- $\alpha \wedge \beta \models \beta$ (RW)
- $\alpha \wedge \beta \succ \gamma$ (MPC)

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \mathrel{\sim} \beta \mathrel{
 ightarrow} \gamma$ (assumption)
- $\alpha \land \beta \models \beta
 ightarrow \gamma$ (Monotonicity)
- $\alpha \land \beta \models \alpha \land \beta$ (Ref)
- $\alpha \wedge \beta \models \beta$ (RW)
- $\alpha \wedge \beta \succ \gamma$ (MPC)

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $lpha \mathrel{{\mid}\sim} eta \to \gamma$ (assumption)
- $\alpha \land \beta \succ \beta
 ightarrow \gamma$ (Monotonicity)
- $\alpha \wedge \beta \models \alpha \wedge \beta$ (Ref)
- $\alpha \wedge \beta \models \beta$ (RW)
- $\alpha \wedge \beta \succ \gamma$ (MPC)

Monotonicity \leftarrow EHD:

 $\models \alpha \rightarrow \beta, \beta \succ \gamma$ (assumption)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $lpha \mathrel{\hspace{0.5mm}\sim} eta \mathrel{\hspace{0.5mm}\rightarrow} \gamma$ (assumption)
- $\alpha \land \beta \mathrel{\sim} \beta \rightarrow \gamma$ (Monotonicity)
- $\alpha \wedge \beta \mathrel{\sim} \alpha \wedge \beta$ (Ref)
- $\alpha \wedge \beta \models \beta$ (RW)
- $\alpha \wedge \beta \succ \gamma$ (MPC)

Monotonicity \leftarrow EHD:

- $\models \alpha \rightarrow \beta, \beta \succ \gamma$ (assumption)
- $\beta \mathrel{\sim} \alpha
 ightarrow \gamma$ (RW)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $lpha \mathrel{\hspace{0.5mm}\sim} eta \mathrel{\hspace{0.5mm}\rightarrow} \gamma$ (assumption)
- $\alpha \land \beta \succ \beta
 ightarrow \gamma$ (Monotonicity)
- $\alpha \wedge \beta \models \alpha \wedge \beta$ (Ref)
- $\alpha \wedge \beta \models \beta$ (RW)
- $\alpha \wedge \beta \succ \gamma$ (MPC)

Monotonicity \leftarrow EHD:

- $\models \alpha \rightarrow \beta, \beta \succ \gamma$ (assumption)
- $\beta \sim \alpha \rightarrow \gamma$ (RW)
- $\beta \land \alpha \succ \gamma$ (EHD)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $lpha \mathrel{\hspace{0.5mm}\sim} eta \mathrel{\hspace{0.5mm}\rightarrow} \gamma$ (assumption)
- $\alpha \land \beta \mathrel{\sim} \beta \rightarrow \gamma$ (Monotonicity)
- $\alpha \wedge \beta \models \alpha \wedge \beta$ (Ref)
- $\alpha \wedge \beta \models \beta$ (RW)
- $\alpha \wedge \beta \succ \gamma$ (MPC)

Monotonicity \leftarrow EHD:

- $\models \alpha \rightarrow \beta, \beta \succ \gamma$ (assumption)
- $\beta \mathrel{\hspace{0.5mm}\sim\hspace{-0.5mm}\mid\hspace{0.5mm} } \alpha
 ightarrow \gamma$ (RW)
- $\beta \land \alpha \sim \gamma$ (EHD)
- $\boldsymbol{\alpha} \sim \boldsymbol{\gamma}$ (LLE)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

BURG

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and Transitivity are equivalent.

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and Transitivity are equivalent.

Proof.

Monotonicity \Rightarrow Transitivity:

• $\alpha \succ \beta, \beta \succ \gamma$ (assumption)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

UNI

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and Transitivity are equivalent.

Proof.

Monotonicity \Rightarrow Transitivity:

- $\alpha \succ \beta, \beta \succ \gamma$ (assumption)
- $\alpha \wedge \beta \models \gamma$ (Monotonicity)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and Transitivity are equivalent.

Proof.

Monotonicity \Rightarrow Transitivity:

- $\alpha \succ \beta, \beta \succ \gamma$ (assumption)
- $\alpha \land \beta \succ \gamma$ (Monotonicity)
- $\boldsymbol{\alpha} \sim \boldsymbol{\gamma}$ (Cut)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and Transitivity are equivalent.

Proof.

Monotonicity \Rightarrow Transitivity:

- $\alpha \succ \beta, \beta \succ \gamma$ (assumption)
- $\alpha \land \beta \succ \gamma$ (Monotonicity)
- $\boldsymbol{\alpha} \sim \boldsymbol{\gamma}$ (Cut)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature
Theorem

In the presence of the rules in system *C*, the rules Monotonicity and Transitivity are equivalent.

Proof.

Monotonicity \Rightarrow Transitivity:

- $\alpha \succ \beta, \beta \succ \gamma$ (assumption)
- $\alpha \land \beta \models \gamma$ (Monotonicity)
- $\boldsymbol{\alpha} \sim \boldsymbol{\gamma}$ (Cut)

Monotonicity \leftarrow Transitivity:

$$\models lpha
ightarrow eta, eta
ightarrow \gamma$$
 (assumption)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and Transitivity are equivalent.

Proof.

Monotonicity \Rightarrow Transitivity:

- $\alpha \succ \beta, \beta \succ \gamma$ (assumption)
- $\alpha \wedge \beta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma$ (Monotonicity)
- $\boldsymbol{\alpha} \sim \boldsymbol{\gamma}$ (Cut)

Monotonicity \leftarrow Transitivity:

- $\models \alpha \rightarrow \beta, \beta \succ \gamma$ (assumption)
- $\alpha \models \beta$ (deduction theorem)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and Transitivity are equivalent.

Proof.

Monotonicity \Rightarrow Transitivity:

- $\alpha \succ \beta, \beta \succ \gamma$ (assumption)
- $\alpha \land \beta \succ \gamma$ (Monotonicity)
- $\alpha \sim \gamma$ (Cut)

Monotonicity \leftarrow Transitivity:

- $\models \alpha \rightarrow \beta, \beta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma$ (assumption)
- $\alpha \models \beta$ (deduction theorem)
- $\alpha \succ \beta$ (Supraclassicality)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Theorem

In the presence of the rules in system *C*, the rules Monotonicity and Transitivity are equivalent.

Proof.

Monotonicity \Rightarrow Transitivity:

- $\alpha \succ \beta, \beta \succ \gamma$ (assumption)
- $\alpha \land \beta \succ \gamma$ (Monotonicity)
- $\boldsymbol{\alpha} \sim \boldsymbol{\gamma}$ (Cut)

Monotonicity \leftarrow Transitivity:

- $\models \alpha \rightarrow \beta, \beta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma$ (assumption)
- $\alpha \models \beta$ (deduction theorem)
- $\alpha \succ \beta$ (Supraclassicality)
- $\alpha \sim \gamma$ (Transitivity)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Theorem

In the presence of Right Weakening, Contraposition implies Monotonicity.

Proof.

• $\models lpha
ightarrow eta, eta
ightarrow \gamma$ (assumption)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Theorem

In the presence of Right Weakening, Contraposition implies Monotonicity.

Proof.

- $\blacksquare \models lpha
 ightarrow eta, eta \models lpha$ $ightarrow eta, eta \models lpha$ (assumption)
- $\neg \gamma \mid \sim \neg \beta$ (Contraposition)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

UNI

Theorem

In the presence of Right Weakening, Contraposition implies Monotonicity.

Proof.

- $\blacksquare \models lpha
 ightarrow eta, eta \models lpha$ $ightarrow eta, eta \models \gamma$ (assumption)
- $\neg \gamma \mid \sim \neg \beta$ (Contraposition)
- $\models \neg eta
 ightarrow \neg lpha$ (classical contraposition)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Theorem

In the presence of Right Weakening, Contraposition implies Monotonicity.

Proof.

- $\blacksquare \models lpha
 ightarrow eta, eta
 ightarrow \gamma$ (assumption)
- $\neg \gamma \models \neg \beta$ (Contraposition)
- $\models \neg \beta \rightarrow \neg \alpha$ (classical contraposition)
- $\neg \gamma \models \neg \alpha$ (RW)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Theorem

In the presence of Right Weakening, Contraposition implies Monotonicity.

Proof.

- $\blacksquare \models lpha
 ightarrow eta, eta \models lpha$ $ightarrow eta, eta \models \gamma$ (assumption)
- $\neg \gamma \models \neg \beta$ (Contraposition)
- $\models \neg \beta \rightarrow \neg \alpha$ (classical contraposition)
- $\neg \gamma \triangleright \neg \alpha$ (RW)
- $\alpha \sim \gamma$ (Contraposition)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

28 / 59

Theorem

In the presence of Right Weakening, Contraposition implies Monotonicity.

Proof.

- $\blacksquare \models lpha
 ightarrow eta, eta \models lpha$ $ightarrow eta, eta \models \gamma$ (assumption)
- $\neg \gamma \models \neg \beta$ (Contraposition)
- $\models \neg \beta \rightarrow \neg \alpha$ (classical contraposition)
- $\neg \gamma \triangleright \neg \alpha$ (RW)
- $\alpha \sim \gamma$ (Contraposition)

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

28 / 59

Theorem

In the presence of Right Weakening, Contraposition implies Monotonicity.

Proof.

- lacksquare $\models lpha
 ightarrow eta, eta \mid\sim \gamma$ (assumption)
- $\neg \gamma \models \neg \beta$ (Contraposition)
- $\models \neg \beta \rightarrow \neg \alpha$ (classical contraposition)
- $\neg \gamma \models \neg \alpha$ (RW)
- $\alpha \sim \gamma$ (Contraposition)

Note: Monotonicity does not imply Contraposition, even in the presence of all rules of system **C**!

Introduction

Motivation

Properties

Derived Rules in (

Undesirable Properties

Reasoning

Semantics

Preferential Reasoning

Literature

Introduction

Reasoning

Semantics

Preferential Reasoning

Literature

Reasoning

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Reasoning with conditionals

- How do we reason with \vdash from ϕ to ψ ?
- Assumption: We have some (finite) set *K* of conditional statements of the form $\alpha \succ \beta$.

The question is: Assuming the statements in K, is it plausible to conclude ψ given φ ?

Idea: We consider all cumulative consequence relations that contain K.

Cumulative consequence relation: any relation \sim between propositional logic formulae that is closed unter the rules of system **C**.

Remark: It suffices to consider only the minimal cumulative consequence relation containing K ...

Reasoning

Semantics

Preferential Reasoning

Cumulative closure

Lemma

The set of cumulative consequence relations is closed under (arbitrary) intersections.

Reasoning Semantics Preferential Reasoning

Cumulative closure

Lemma

The set of cumulative consequence relations is closed under (arbitrary) intersections.

Proof.

Let $\[\sim]_1$ and $\[\sim]_2$ be cumulative consequence relations. We have to show that $\[\sim]_1 \cap \[\sim]_2$ is a cumulative consequence relation, that is, it is closed under all the rules of system **C**.

Introduction Reasoning Semantics

Preferentia Reasoning

Literature

Lemma

The set of cumulative consequence relations is closed under (arbitrary) intersections.

Proof.

Let $\[begin{subarray}{c} \sim_1 \]$ and $\[begin{subarray}{c} \sim_2 \]$ be cumulative consequence relations. We have to show that $\[begin{subarray}{c} \sim_1 \cap \[begin{subarray}{c} \sim_2 \]$ is a cumulative consequence relation, that is, it is closed under all the rules of system **C**.

Take any instance of any of the rules. If the preconditions are satisfied by \mid_{2} , and \mid_{2} , then the consequence is trivially also satisfied by both.

Introduction Reasoning

Semantics

Preferential Reasoning

Lemma

The set of cumulative consequence relations is closed under (arbitrary) intersections.

Proof.

Let $\[begin{subarray}{c} \sim_1 \]$ and $\[begin{subarray}{c} \sim_2 \]$ be cumulative consequence relations. We have to show that $\[begin{subarray}{c} \sim_1 \cap \[begin{subarray}{c} \sim_2 \]$ is a cumulative consequence relation, that is, it is closed under all the rules of system **C**.

Take any instance of any of the rules. If the preconditions are satisfied by $|\sim_1$ and $|\sim_2$, then the consequence is trivially also satisfied by both. A similar argument works if we consider an arbitrary family of consequence relations.

Introduction Reasoning

Preferentia

Reasoning

Cumulative closure

Theorem Reasoning For each finite set of conditional statements K, there exists a unique minimal cumulative consequence relation containing K. Preferential Reasoning

Cumulative closure

Theorem

For each finite set of conditional statements *K*, there exists a unique minimal cumulative consequence relation containing *K*.

Proof.

From the previous lemma it is clear that the intersection of all the cumulative consequence relations containing K is already such a cumulative consequence relation.

Obviously, there cannot be two distinct such minimal relations.

This relation is called the cumulative closure K^C of K.

Reasoning Semantics

Preferential Reasoning

Introduction

Reasoning

Semantics

Cumulative Models Consequence Relations

Preferential Reasoning

Literature

Semantics

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Cumulative models - informally

- We will now try to characterize cumulative reasoning model-theoretically.
- Idea: Cumulative models consist of states ordered by a preference relation.
- States characterize beliefs.
- The preference relation, ≺, expresses the normality of the beliefs.
 We read s ≺ t as: state s is preferred to/more normal than state t.
- We say: $\alpha \succ \beta$ is accepted in a model if in all most preferred states in which α is true also β is true.

Introduction

Reasoning

Semantics

Cumulative Models

Consequence Relations

Preferential Reasoning

Literature

Preference relation

We consider an arbitrary binary relation \prec on a given set of states *S*.

Later, we will assume that \prec has particular properties, e.g., that

 \prec is irreflexive, asymmetric, transitive, a partial order, ...

Introduction

Reasoning

Semantics

Cumulative Models Consequence

Preferential Reasoning

We consider an arbitrary binary relation \prec on a given set of states *S*.

Later, we will assume that \prec has particular properties, e.g., that

- \prec is irreflexive, asymmetric, transitive, a partial order, \dots
- ... but currently we make no such restrictions.

We need a condition on state sets claiming that each state is, or is related to, a most preferred state.

Definition (Smoothness)

Let $P \subseteq S$.

• We say that $s \in P$ is minimal in P if $s' \not\prec s$ for each $s' \in P$.

■ *P* is called smooth if for each $s \in P$, either *s* is minimal in *P* or there exists an *s'* such that *s'* is minimal in *P* and *s'* \prec *s*.

Introduction

Reasoning

Semantics

Cumulative Models Consequence

Preferential Reasoning

Let $\ensuremath{\mathcal{U}}$ be the set of all possible worlds (i.e., propositional interpretations).

- A cumulative model is a triple $W = \langle S, I, \prec \rangle$ such that
 - 1 *S* is a set of states,
 - 2 I is a mapping $I: \mathcal{S}
 ightarrow 2^{\mathcal{U}}$, and
 - $\exists \prec$ is an arbitrary binary relation on S

such that the smoothness condition is satisfied (see below).

- A state s ∈ S satisfies a formula α (s ⊨ α) if m ⊨ α for each propositional interpretation m ∈ l(s).
 The set of states satisfying α is denoted by α̂.
- Smoothness condition: A cumulative model satisfies this condition if for all formulae α , $\hat{\alpha}$ is smooth.

Introduction

Reasoning

Semantics

Cumulative Models

Preferential

A cumulative model *W* induces a consequence relation \sim_W as follows:

 $\alpha \succ_W \beta$ iff $s \models \beta$ for every minimal s in $\hat{\alpha}$.

Example

Model
$$W = \langle \{s_1, s_2, s_3\}, I, \prec \rangle$$
 with $s_1 \prec s_2, s_2 \prec s_3, s_1 \prec s_3$
 $I(s_1) = \{\{\neg p, b, f\}\}$
 $I(s_2) = \{\{p, b, \neg f\}\}$
 $I(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$

Does W satisfy the smoothness condition?

Reasoning

Semantics Cumulative Model

> Consequence Relations

Preferential Reasoning

A cumulative model *W* induces a consequence relation \sim_W as follows:

 $\alpha \succ_W \beta$ iff $s \models \beta$ for every minimal s in $\hat{\alpha}$.

Example

Model
$$W = \langle \{s_1, s_2, s_3\}, I, \prec \rangle$$
 with $s_1 \prec s_2, s_2 \prec s_3, s_1 \prec s_4$
 $I(s_1) = \{\{\neg p, b, f\}\}$
 $I(s_2) = \{\{p, b, \neg f\}\}$
 $I(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$

Does *W* satisfy the smoothness condition? $\neg p \land \neg b \vdash f$?

Reasoning Semantics

Consequence Relations

Preferential Reasoning

A cumulative model *W* induces a consequence relation \sim_W as follows:

 $\alpha \succ_W \beta$ iff $s \models \beta$ for every minimal s in $\hat{\alpha}$.

Example

Model
$$W = \langle \{s_1, s_2, s_3\}, I, \prec \rangle$$
 with $s_1 \prec s_2, s_2 \prec s_3, s_1 \prec s_3$
 $I(s_1) = \{\{\neg p, b, f\}\}$
 $I(s_2) = \{\{p, b, \neg f\}\}$
 $I(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$

Does *W* satisfy the smoothness condition? $\neg p \land \neg b \sim f$? N

Reasoning Semantics

Consequence Relations

Preferential Reasoning

A cumulative model *W* induces a consequence relation \sim_W as follows:

 $\alpha \succ_W \beta$ iff $s \models \beta$ for every minimal s in $\hat{\alpha}$.

Example

Model
$$W = \langle \{s_1, s_2, s_3\}, I, \prec \rangle$$
 with $s_1 \prec s_2, s_2 \prec s_3, s_1 \prec s_3$
 $I(s_1) = \{\{\neg p, b, f\}\}$
 $I(s_2) = \{\{p, b, \neg f\}\}$
 $I(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$

Does *W* satisfy the smoothness condition? $\neg p \land \neg b \succ f$? N Also: $\neg p \land \neg b \not\succ \neg f$! Reasoning Semantics

Cumulative Models

Consequence Relations

Preferential Reasoning

Literature

A cumulative model *W* induces a consequence relation \sim_W as follows:

 $\alpha \succ_W \beta$ iff $s \models \beta$ for every minimal s in $\hat{\alpha}$.

Example

Model
$$W = \langle \{s_1, s_2, s_3\}, I, \prec \rangle$$
 with $s_1 \prec s_2, s_2 \prec s_3, s_1 \prec s_3$
 $I(s_1) = \{\{\neg p, b, f\}\}$
 $I(s_2) = \{\{p, b, \neg f\}\}$
 $I(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$

Does *W* satisfy the smoothness condition? $\neg p \land \neg b \succ f$? N Also: $\neg p \land \neg b \not\succ \neg f$! $p \not\vdash \neg f$? Reasoning

Semantics Cumulative Model

> Consequence Relations

Preferential Reasoning

Literature

A cumulative model *W* induces a consequence relation \sim_W as follows:

 $\alpha \succ_W \beta$ iff $s \models \beta$ for every minimal s in $\hat{\alpha}$.

Example

Model
$$W = \langle \{s_1, s_2, s_3\}, I, \prec \rangle$$
 with $s_1 \prec s_2, s_2 \prec s_3, s_1 \prec s_3$
 $I(s_1) = \{\{\neg p, b, f\}\}$
 $I(s_2) = \{\{p, b, \neg f\}\}$
 $I(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$

Does *W* satisfy the smoothness condition? $\neg p \land \neg b \succ f$? N Also: $\neg p \land \neg b \not\succ \neg f$! $p \not\vdash \neg f$? Y Reasoning

Cumulative Model

Consequence Relations

Preferential Reasoning

Literature

A cumulative model *W* induces a consequence relation \sim_W as follows:

 $\alpha \succ_W \beta$ iff $s \models \beta$ for every minimal s in $\hat{\alpha}$.

Example

Model
$$W = \langle \{s_1, s_2, s_3\}, I, \prec \rangle$$
 with $s_1 \prec s_2, s_2 \prec s_3, s_1 \prec s_3$
 $I(s_1) = \{\{\neg p, b, f\}\}$
 $I(s_2) = \{\{p, b, \neg f\}\}$
 $I(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$

Does *W* satisfy the smoothness condition? $\neg p \land \neg b \vdash f$? N Also: $\neg p \land \neg b \not\vdash \neg f$! $p \vdash \neg f$? Y $\neg p \vdash f$?

January 11 & 13, 2016

Reasoning

Semantics Cumulative Model

Consequence Relations

Preferential Reasoning

Literature

A cumulative model *W* induces a consequence relation \sim_W as follows:

 $\alpha \succ_W \beta$ iff $s \models \beta$ for every minimal s in $\hat{\alpha}$.

Example

Model
$$W = \langle \{s_1, s_2, s_3\}, I, \prec \rangle$$
 with $s_1 \prec s_2, s_2 \prec s_3, s_1 \prec s_3$
 $I(s_1) = \{\{\neg p, b, f\}\}$
 $I(s_2) = \{\{p, b, \neg f\}\}$
 $I(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$

Does *W* satisfy the smoothness condition? $\neg p \land \neg b \succ f$? N Also: $\neg p \land \neg b \not\succ \neg f$! $p \not\vdash \neg f$? Y $\neg p \not\vdash f$? Y

January 11 & 13, 2016

Reasoning

Semantics Cumulative Model

> Consequence Relations

Preferential Reasoning

Literature

REIBURG

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Introduction Reasoning

Semantics Cumulative Mode

Consequence Relations

Preferential Reasoning

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

Reflexivity: satisfied.

Introduction Reasoning

Semantics Cumulative Mode

Consequence Relations

Preferential Reasoning

Literature

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied.
- LLE: satisfied.

Introduction Reasoning

Semantics Cumulative Mode

Consequence Relations

Preferential Reasoning

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied.
- LLE: satisfied.
- RW: satisfied.

Reasoning Semantics Cumulative More

Consequence Relations

Preferential Reasoning

Literature

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied.
- LLE: satisfied.
- RW: satisfied.
- **Cut:** $\alpha \vdash_{W} \beta$, $\alpha \land \beta \vdash_{W} \gamma \Rightarrow \alpha \vdash_{W} \gamma$.

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied.
- LLE: satisfied.
- RW: satisfied.
- **Cut:** $\alpha \vdash_{W} \beta$, $\alpha \land \beta \vdash_{W} \gamma \Rightarrow \alpha \vdash_{W} \gamma$.

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied.
- LLE: satisfied.
- RW: satisfied.
- Cut: $\alpha \vdash_W \beta$, $\alpha \land \beta \vdash_W \gamma \Rightarrow \alpha \vdash_W \gamma$. Assume that all minimal elements of $\hat{\alpha}$ satisfy β

Introduction Reasoning

Semantics Cumulative Mode

Consequence Relations

Preferential Reasoning

Literature

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied.
- LLE: satisfied.
- RW: satisfied.
- Cut: $\alpha \vdash_W \beta$, $\alpha \land \beta \vdash_W \gamma \Rightarrow \alpha \vdash_W \gamma$. Assume that all minimal elements of $\widehat{\alpha}$ satisfy β , and all minimal elements of $\widehat{\alpha \land \beta}$ satisfy γ .

Introduction Reasoning

Semantics Cumulative Model

Consequence Relations

Preferential Reasoning

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied.
- LLE: satisfied.
- RW: satisfied.
- Cut: $\alpha \vdash_W \beta$, $\alpha \land \beta \vdash_W \gamma \Rightarrow \alpha \vdash_W \gamma$. Assume that all minimal elements of $\hat{\alpha}$ satisfy β , and all minimal elements of $\widehat{\alpha \land \beta}$ satisfy γ . Every minimal element of $\hat{\alpha}$ satisfies $\alpha \land \beta$.

Introduction Reasoning

Semantics Cumulative Model

Consequence Relations

Preferential Reasoning

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied.
- LLE: satisfied.
- RW: satisfied.

Cut: $\alpha \vdash_W \beta$, $\alpha \land \beta \vdash_W \gamma \Rightarrow \alpha \vdash_W \gamma$. Assume that all minimal elements of $\hat{\alpha}$ satisfy β , and all minimal elements of $\widehat{\alpha \land \beta}$ satisfy γ . Every minimal element of $\hat{\alpha}$ satisfies $\alpha \land \beta$. Since $\widehat{\alpha \land \beta} \subseteq \hat{\alpha}$, all minimal elements of $\hat{\alpha}$ are also minimal elements of $\alpha \land \beta$.

Introduction Reasoning

Semantics Cumulative Model

Consequence Relations

Preferential Reasoning

Literature

Theorem

If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied.
- LLE: satisfied.
- RW: satisfied.

Cut: $\alpha \vdash_W \beta$, $\alpha \land \beta \vdash_W \gamma \Rightarrow \alpha \vdash_W \gamma$. Assume that all minimal elements of $\hat{\alpha}$ satisfy β , and all minimal elements of $\widehat{\alpha \land \beta}$ satisfy γ . Every minimal element of $\hat{\alpha}$ satisfies $\alpha \land \beta$. Since $\alpha \land \beta \subseteq \hat{\alpha}$, all minimal elements of $\hat{\alpha}$ are also minimal elements of $\widehat{\alpha \land \beta}$. Hence $\alpha \vdash_W \gamma$.

Introduction Reasoning

Semantics Cumulative Model

Consequence Relations

Preferential Reasoning

Literature

IBURG

Proof continues...

Introduction Reasoning

Cumulative Models

Consequence Relations

Preferential Reasoning

Literature

41/59

Proof continues...

■ Cautious Monotonicity: $(\alpha \succ \beta, \alpha \succ \gamma \Rightarrow \alpha \land \beta \succ \gamma)$ Assume $\alpha \succ_W \beta$ and $\alpha \succ_W \gamma$. Introduction Reasoning

Semantics Cumulative Models

Consequence Relations

Preferential Reasoning

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

41 / 59

Proof continues...

Cautious Monotonicity: $(\alpha \vdash \beta, \alpha \vdash \gamma \Rightarrow \alpha \land \beta \vdash \gamma)$ Assume $\alpha \vdash_W \beta$ and $\alpha \vdash_W \gamma$. We have to show: $\alpha \land \beta \vdash_W \gamma$, i.e., $s \models \gamma$ for all minimal $s \in \widehat{\alpha \land \beta}$. Introduction Reasoning Semantics

Cumulative Mod

Consequence Relations

Preferential Reasoning

Literature

Nebel, Wölfl, Lindner - KR&R

41 / 59

FIBURG

Proof continues...

Cautious Monotonicity: $(\alpha \triangleright \beta, \alpha \triangleright \gamma \Rightarrow \alpha \land \beta \triangleright \gamma)$ Assume $\alpha \models_W \beta$ and $\alpha \models_W \gamma$. We have to show: $\alpha \land \beta \models_W \gamma$, i.e., $s \models \gamma$ for all minimal $s \in \widehat{\alpha \land \beta}$. Clearly, every minimal $s \in \widehat{\alpha \land \beta}$ is in $\widehat{\alpha}$. Introduction Reasoning Semantics

Cumulative Mod Consequence Relations

Preferential Reasoning

Literature

IBURG

Proof continues...

Cautious Monotonicity: $(\alpha \triangleright \beta, \alpha \triangleright \gamma \Rightarrow \alpha \land \beta \triangleright \gamma)$ Assume $\alpha \triangleright_W \beta$ and $\alpha \models_W \gamma$. We have to show: $\alpha \land \beta \models_W \gamma$, i.e., $s \models \gamma$ for all minimal $s \in \widehat{\alpha \land \beta}$. Clearly, every minimal $s \in \widehat{\alpha \land \beta}$ is in $\widehat{\alpha}$.

We show that every minimal $s \in \widehat{\alpha \land \beta}$ is minimal in $\widehat{\alpha}$.

Introduction Reasoning

Cumulative Mode

Consequence Relations

Preferential Reasoning

Literature

Proof continues...

Cautious Monotonicity: $(\alpha \triangleright \beta, \alpha \triangleright \gamma \Rightarrow \alpha \land \beta \triangleright \gamma)$ Assume $\alpha \triangleright_W \beta$ and $\alpha \triangleright_W \gamma$. We have to show: $\alpha \land \beta \succ_W \gamma$, i.e., $s \models \gamma$ for all minimal $s \in \widehat{\alpha \land \beta}$. Clearly, every minimal $s \in \widehat{\alpha \land \beta}$ is in $\widehat{\alpha}$. We show that every minimal $s \in \widehat{\alpha \land \beta}$ is minimal in $\widehat{\alpha}$.

Assumption: There is *s* that is minimal in $\alpha \wedge \beta$, but not minimal in $\hat{\alpha}$.

Introduction Reasoning Semantics

Consequence Relations

Preferential Reasoning

Proof continues...

Cautious Monotonicity: $(\alpha \triangleright \beta, \alpha \triangleright \gamma \Rightarrow \alpha \land \beta \triangleright \gamma)$ Assume $\alpha \triangleright_W \beta$ and $\alpha \models_W \gamma$. We have to show: $\alpha \land \beta \models_W \gamma$, i.e., $s \models \gamma$ for all minimal $s \in \widehat{\alpha \land \beta}$.

Clearly, every minimal $s \in \alpha \land \beta$ is in $\widehat{\alpha}$.

We show that every minimal $s \in \alpha \land \beta$ is minimal in $\hat{\alpha}$.

Assumption: There is *s* that is minimal in $\alpha \land \beta$, but not minimal in $\hat{\alpha}$. Because of smoothness there is minimal $s' \in \hat{\alpha}$ such that $s' \prec s$.

Introduction Reasoning Semantics

Cumulative Model

Consequence Relations

Preferential Reasoning

Proof continues...

Cautious Monotonicity: $(\alpha \triangleright \beta, \alpha \triangleright \gamma \Rightarrow \alpha \land \beta \triangleright \gamma)$ Assume $\alpha \triangleright_W \beta$ and $\alpha \vdash_W \gamma$. We have to show: $\alpha \land \beta \vdash_W \gamma$, i.e., $s \models \gamma$ for all minimal $s \in \widehat{\alpha \land \beta}$.

Clearly, every minimal $s \in \widehat{\alpha} \land \widehat{\beta}$ is in $\widehat{\alpha}$.

We show that every minimal $s \in \widehat{\alpha \land \beta}$ is minimal in $\widehat{\alpha}$.

Assumption: There is *s* that is minimal in $\alpha \land \beta$, but not minimal in $\hat{\alpha}$. Because of smoothness there is minimal $s' \in \hat{\alpha}$ such that $s' \prec s$. We know, however, that $s' \models \beta$, which means that $s' \in \widehat{\alpha \land \beta}$.

Introduction Reasoning Semantics

Cumulative Model

Consequence Relations

Preferential Reasoning

Literature

Proof continues...

Cautious Monotonicity: $(\alpha \succ \beta, \alpha \succ \gamma \Rightarrow \alpha \land \beta \succ \gamma)$ Assume $\alpha \succ_W \beta$ and $\alpha \succ_W \gamma$. We have to show: $\alpha \land \beta \succ_W \gamma$, i.e., $s \models \gamma$ for all minimal $s \in \widehat{\alpha \land \beta}$.

Clearly, every minimal $s \in \widehat{\alpha} \land \widehat{\beta}$ is in $\widehat{\alpha}$.

We show that every minimal $s \in \widehat{\alpha \land \beta}$ is minimal in $\widehat{\alpha}$.

Assumption: There is *s* that is minimal in $\alpha \land \beta$, but not minimal in $\hat{\alpha}$. Because of smoothness there is minimal $s' \in \hat{\alpha}$ such that $s' \prec s$. We know, however, that $s' \models \beta$, which means that $s' \in \widehat{\alpha \land \beta}$. Hence *s* is not minimal in $\widehat{\alpha \land \beta}$. Contradiction!

Introduction Reasoning Semantics

Cumulative Model

Consequence Relations

Preferential Reasoning

Literature

Proof continues...

Cautious Monotonicity: $(\alpha \triangleright \beta, \alpha \triangleright \gamma \Rightarrow \alpha \land \beta \triangleright \gamma)$ Assume $\alpha \triangleright_W \beta$ and $\alpha \models_W \gamma$. We have to show: $\alpha \land \beta \models_W \gamma$, i.e., $s \models \gamma$ for all minimal $s \in \widehat{\alpha \land \beta}$.

Clearly, every minimal $s \in \widehat{\alpha} \land \widehat{\beta}$ is in $\widehat{\alpha}$.

We show that every minimal $s \in \widehat{\alpha \land \beta}$ is minimal in $\widehat{\alpha}$.

Assumption: There is *s* that is minimal in $\alpha \land \beta$, but not minimal in $\hat{\alpha}$. Because of smoothness there is minimal $s' \in \hat{\alpha}$ such that $s' \prec s$. We know, however, that $s' \models \beta$, which means that $s' \in \alpha \land \beta$. Hence *s* is not minimal in $\alpha \land \beta$. Contradiction! Hence *s* must be minimal in $\hat{\alpha}$, and therefore $s \models \gamma$. Introduction Reasoning Semantics

Cumulative Model

Consequence Relations

Preferential Reasoning

Literature

Proof continues...

Cautious Monotonicity: $(\alpha \succ \beta, \alpha \succ \gamma \Rightarrow \alpha \land \beta \succ \gamma)$ Assume $\alpha \succ_W \beta$ and $\alpha \succ_W \gamma$. We have to show: $\alpha \land \beta \succ_W \gamma$, i.e., $s \models \gamma$ for all minimal $s \in \widehat{\alpha \land \beta}$.

Clearly, every minimal $s \in \alpha \land \hat{\beta}$ is in $\hat{\alpha}$.

We show that every minimal $s \in \widehat{\alpha \land \beta}$ is minimal in $\widehat{\alpha}$.

Assumption: There is *s* that is minimal in $\alpha \land \beta$, but not minimal in $\hat{\alpha}$. Because of smoothness there is minimal $s' \in \hat{\alpha}$ such that $s' \prec s$. We know, however, that $s' \models \beta$, which means that $s' \in \widehat{\alpha \land \beta}$. Hence *s* is not minimal in $\widehat{\alpha \land \beta}$. Contradiction!

Hence *s* must be minimal in $\hat{\alpha}$, and therefore $s \models \gamma$. Because this is true for all minimal elements in $\widehat{\alpha \land \beta}$, we get $\alpha \land \beta \models_W \gamma$.

Reasoning Semantics

Consequence Belations

Preferential Reasoning

Literature

Now we have a method for showing that a principle does not hold for cumulative consequence relations:

... construct a cumulative model that falsifies the principle.

Contraposition: $\alpha \triangleright \beta \Rightarrow \neg \beta \triangleright \neg \alpha$

$$W = \langle S, I, \prec \rangle$$
$$S = \{s_1, s_2\}$$
$$s_i \not\prec s_j \forall s_i, s_j \in S$$
$$U(s_1) = \{\{a, b\}\}$$
$$U(s_2) = \{\{a, \neg b\}, \{\neg a, \neg b\}\}$$

W is a cumulative model with $a \succ_W b$, but $\neg b \not\succ_W \neg a$.

January 11 & 13, 2016

Introduction

Reasoning

Semantics Cumulative Mode

Consequence Relations

Preferential Reasoning

Literature

42/59 **22**

Completeness?

- Each cumulative model W induces a cumulative consequence relation \sim_W .
- Problem: Can we generate all cumulative consequence relations in this way?
- We can! There is a representation theorem:

Theorem (Representation of cumulative consequence)

A consequence relation is cumulative if and only if it is induced by some cumulative model.

Cumulative consequence can be characterized independently from the set of inference rules. Introductio

Reasoning

Semantics Cumulative Mode

Consequence Relations

Preferential Reasoning

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

43 / 59

Transitivity of the preference relation?

- Could we strengthen the preference relation to transitive relations without sacrificing anything? No!
- In such models, the following additional principle called Loop is valid:

$$\frac{\alpha_0 \succ \alpha_1, \alpha_1 \succ \alpha_2, \dots, \alpha_k \succ \alpha_0}{\alpha_0 \succ \alpha_k}$$

For the system CL = C + (Loop) and cumulative models with transitive preference relations, we could prove another representation theorem.

Cumulative Model

Consequence Relations

Preferential Reasoning

The Or Rule

Or rule:

 $\frac{\alpha \mathrel{\sim} \gamma, \, \beta \mathrel{\sim} \gamma}{\alpha \lor \beta \mathrel{\sim} \gamma}$

Not valid in system C. Counterexample:

$$W = \langle S, I, \prec \rangle$$

$$S = \{s_1, s_2, s_3\}, s_i \not\prec s_j \forall s_i, s_j \in S$$

$$I(s_1) = \{\{a, b, c\}, \{a, \neg b, c\}\}$$

$$I(s_2) = \{\{a, b, c\}, \{\neg a, b, c\}\}$$

$$I(s_3) = \{\{a, b, \neg c\}, \{a, \neg b, \neg c\}, \{\neg a, b, \neg c\}\}$$

 $a \vdash_W c, b \vdash_W c$, but not $a \lor b \vdash_W c$. Note: Or is not valid in default logic.

January 11 & 13, 2016

Introduction

Reasoning

Semantics Cumulative Model

Consequence Relations

Preferential Reasoning

Introduction

Reasoning

Semantics

Preferential Reasoning

Preferential Relations

Literature

Preferential Reasoning

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

System **P**

- System P contains all rules of C and the Or rule.
- A consequence relation that satisfies P is called preferential.
- Derived rules in P:
 - Hard half of the deduction theorem (S):

$$\frac{\alpha \land \beta \mathrel{\sim} \gamma}{\alpha \mathrel{\sim} \beta \mathrel{\rightarrow} \gamma}$$

Proof by case analysis (D):

$$\frac{\alpha \wedge \neg \beta \vdash \gamma, \, \alpha \wedge \beta \vdash \gamma}{\alpha \vdash \gamma}$$

D and Or are equivalent in the presence of the rules in C.

Semantics

Preferential Reasoning

Preferential Relations

Literature

48 / 59

Nebel, Wölfl, Lindner - KR&R

Theorem (Soundness)

The consequence relation \succ_W induced by a preferential model is preferential.

Proof.

Since W is cumulative, we only have to verify that Or holds.

Reasoning Semantics Preferential Reasoning

> Preferential Relations

Theorem (Soundness)

The consequence relation \succ_W induced by a preferential model is preferential.

Proof.

Since *W* is cumulative, we only have to verify that Or holds. Note that in preferential models we have $\widehat{\alpha \lor \beta} = \widehat{\alpha} \cup \widehat{\beta}$.

Reasoning Semantics Preferential Reasoning

Preferential Relations

Theorem (Soundness)

The consequence relation \succ_W induced by a preferential model is preferential.

Proof.

Since *W* is cumulative, we only have to verify that Or holds. Note that in preferential models we have $\widehat{\alpha \lor \beta} = \widehat{\alpha} \cup \widehat{\beta}$. Suppose $\alpha \vdash_W \gamma$ and $\beta \vdash_W \gamma$.

Reasoning Semantics Preferential Reasoning

> Preferential Relations

Theorem (Soundness)

The consequence relation \succ_W induced by a preferential model is preferential.

Proof.

Since *W* is cumulative, we only have to verify that Or holds. Note that in preferential models we have $\widehat{\alpha \lor \beta} = \widehat{\alpha} \cup \widehat{\beta}$. Suppose $\alpha \vdash_W \gamma$ and $\beta \vdash_W \gamma$. Because of the above equation, each minimal state of $\widehat{\alpha \lor \beta}$ is minimal in $\widehat{\alpha} \cup \widehat{\beta}$. Reasoning Semantics Preferential Reasoning

Preferential Relations

Theorem (Soundness)

The consequence relation \succ_W induced by a preferential model is preferential.

Proof.

Since *W* is cumulative, we only have to verify that Or holds. Note that in preferential models we have $\widehat{\alpha \lor \beta} = \widehat{\alpha} \cup \widehat{\beta}$. Suppose $\alpha \succ_W \gamma$ and $\beta \succ_W \gamma$. Because of the above equation, each minimal state of $\widehat{\alpha \lor \beta}$ is minimal in $\widehat{\alpha} \cup \widehat{\beta}$. Since γ is satisfied in all minimal states in $\widehat{\alpha} \cup \widehat{\beta}$, γ is also satisfied in all minimal states of $\widehat{\alpha \lor \beta}$. Reasoning Semantics Preferential Reasoning

> Preferential Relations

Theorem (Soundness)

The consequence relation \succ_W induced by a preferential model is preferential.

Proof.

Since *W* is cumulative, we only have to verify that Or holds. Note that in preferential models we have $\widehat{\alpha \lor \beta} = \widehat{\alpha} \cup \widehat{\beta}$. Suppose $\alpha \vdash_W \gamma$ and $\beta \vdash_W \gamma$. Because of the above equation, each minimal state of $\widehat{\alpha \lor \beta}$ is minimal in $\widehat{\alpha} \cup \widehat{\beta}$. Since γ is satisfied in all minimal states in $\widehat{\alpha} \cup \widehat{\beta}, \gamma$ is also satisfied in all minimal states of $\widehat{\alpha \lor \beta}$. Hence $\alpha \lor \beta \vdash_W \gamma$. \Box Reasoning Semantics Preferential Reasoning

Preferential Relations

Theorem (Representation of preferential consequence)

A consequence relation is preferential if and only if it is induced by a preferential model.

Proof.

Similar to the one for C.

Semantics

Preferential Relations

Summary of cumulative systems

			Introduction
System	Models		Reasoning
C			Semantics
Reflexivity	States: sets of worlds		Preferential
Left Logical Equivalenc	e Preference relation: arbi	trary	Preferential Relations
Right Weakening	Models must be smooth		Literature
Cut Cautious Monotonicity			
CL			
+ Loop	Preference relation: stric	t partial order	
Р			
+ Or	States: singletons		g
		_	Ď <u>a</u>
January 11 & 13, 2016	lebel, Wölfl, Lindner – KR&R	52 / 59	E C C C C C C C C C C C C C C C C C C C

Strengthening the consequence relation

System C and system P do not produce many of the inferences one would hope for: Introduction

Reasoning

Semantics

Preferential Reasoning

Preferential Relations

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

System C and system P do not produce many of the inferences one would hope for:

Given $K = \{Bird \mid \sim Flies\}$ one cannot conclude Red \land Bird $\mid \sim$ Flies! Introduction

Reasoning

Semantics

Preferential Reasoning

Preferential Relations

System C and system P do not produce many of the inferences one would hope for:

Given $K = \{Bird \mid \sim Flies\}$ one cannot conclude Red \land Bird $\mid \sim$ Flies!

- In general, adding information that is irrelevant cancels the plausible conclusions.
 - \Rightarrow Cumulative and preferential consequence relations are too nonmonotonic.

Reasoning Semantics

Preferential Reasoning

Preferential Relations

System C and system P do not produce many of the inferences one would hope for:

Given $K = \{Bird \mid \sim Flies\}$ one cannot conclude Red \land Bird $\mid \sim$ Flies!

In general, adding information that is irrelevant cancels the plausible conclusions.

 \Rightarrow Cumulative and preferential consequence relations are too nonmonotonic.

The plausible conclusions have to be strengthened!

Reasoning

Semantics

Preferential Reasoning

Preferential Relations

Strengthening the consequence relations

The rules so far seem to be reasonable: are there other rules of the same form (if we have some plausible implications, other plausible implications should hold) that could be added? Reasoning Semantics Preferential Reasoning

> Preferential Relations

Strengthening the consequence relations

- The rules so far seem to be reasonable: are there other rules of the same form (if we have some plausible implications, other plausible implications should hold) that could be added?
 - However, there are other types of rules one might want add.

Reasoning Semantics Preferential Reasoning

Preferential Relations

Strengthening the consequence relations

- The rules so far seem to be reasonable: are there other rules of the same form (if we have some plausible implications, other plausible implications should hold) that could be added?
- However, there are other types of rules one might want add.
- Disjunctive Rationality:

$$\frac{\alpha \not\sim \gamma, \beta \not\sim \gamma}{\alpha \lor \beta \not\sim \gamma}$$

Rational Monotonicity:

$$\frac{\alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma, \hspace{0.58em} \alpha \hspace{0.2em}\not\sim\hspace{-0.58em}\mid\hspace{0.58em} \neg \beta}{\alpha \hspace{0.2em}\wedge\hspace{0.58em} \beta \hspace{0.2em}\mid\hspace{0.58em} \gamma}$$

Note: Consequence relations obeying these rules are not closed under intersection, which is a problem.

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Reasoning Semantics Preferentia

> Preferential Relations

Literature

54/59

- Instead of ad hoc extensions of the logical machinery, analyze the properties of nonmonotonic consequence relations.
- Correspondence between rule system and models for system C, and for system P could also be established wrt. a probabilistic semantics.
- Irrelevant information poses a problem. Solution approaches: rational monotonicity, maximum entropy approach.

Reasoning Semantics Preferential

> Preferential Relations

Introduction Reasoning Semantics Preferential Reasoning

Literature

Literature

January 11 & 13, 2016

Nebel, Wölfl, Lindner - KR&R

Literature I

First to consider abstract properties of nonmonotonic consequence relations.

Nebel, Wölfl, Lindner - KR&R

58/59

Literature II

Introduces the idea of preferential models.

