Principles of Knowledge Representation and Reasoning Semantic Networks and Description Logics V: Description Logics – Decidability and Complexity

UNI FREIBURG

Bernhard Nebel, Stefan Wölfl, and Felix Lindner December 7, 2015

Decidability & Undecidability

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Nebel, Wölfl, Lindner - KR&R

 L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_2^=$: L_2 plus equality.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

 L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_2^=$: L_2 plus equality.

Theorem

 $L_2^=$ is decidable.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

 L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_2^=$: L_2 plus equality.

Theorem

 $L_2^{=}$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1} .

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

 L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_2^=$: L_2 plus equality.

Theorem

 $L_2^{=}$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1} .

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real

December 7, 2015

Nebel, Wölfl, Lindner - KR&R

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

URG

4/30

Undecidability

r ∘ *s*, *r* ⊓ *s*, ¬*r*, 1 [Schild 88] … already shown by Tarski (for relation algebras)

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Undecidability

r ∘ s, r □ s, ¬r, 1 [Schild 88]
 … already shown by Tarski (for relation algebras)
 r ∘ s, r = s, C □ D, ∀r.C [Schmidt-Schauß 89]
 … This is, in fact, a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Polynomial Cases

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

December 7, 2015

Nebel, Wölfl, Lindner - KR&R

■ *FL*⁻ has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time. Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- *FL*⁻ has obviously a polynomial subsumption problem (in the empty TBox) the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- *FL*⁻ has obviously a polynomial subsumption problem (in the empty TBox) the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- *FL⁻* has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:

$$C := A |\neg A| \top |\bot| C \sqcap C' |\forall r.C| (\geq nr)| (\leq nr),$$

r := t | r⁻¹

and

$$C := A | C \sqcap C' | \forall r.C | \exists r$$
$$r := t | r^{-1} | r \sqcap r' | r \circ r'$$

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Complexity of \mathcal{ALC} Subsumption

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Proposition

ALC subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

11/30

Proposition

ALC subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Proposition

ALC subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$egin{aligned} & \mathcal{A}_i & \mapsto \mathcal{A}_i \ & \psi \wedge \psi' & \mapsto \pi(\psi) \sqcap \pi(\psi') \ & \psi' \lor \psi & \mapsto \pi(\psi) \sqcup \pi(\psi') \ &
eg \psi & \mapsto \neg \pi(\psi) \end{aligned}$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction).

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

11/30

Proposition

ALC subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$egin{array}{lll} a_i \mapsto a_i \ \psi \wedge \psi' \mapsto \pi(\psi) \sqcap \pi(\psi') \ \psi' \lor \psi \mapsto \pi(\psi) \sqcup \pi(\psi') \
eg \psi \mapsto \neg \pi(\psi) \end{array}$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element *t* standing for the truth of the atoms and the formula.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

BURG

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$egin{aligned} &a_i\mapsto a_i\ &\psi\wedge\psi'\mapsto\pi(\psi)\sqcap\pi(\psi')\ &\psi'\vee\psi\mapsto\pi(\psi)\sqcup\pi(\psi')\ &\neg\psi\mapsto
egned\ &\gamma\pi(\psi) \end{aligned}$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element *t* standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a: according to the fact that $d \in \pi(\varphi)^{\mathcal{I}}$ and set the number T_{2015} and set the fact that $d \in \pi(\varphi)^{\mathcal{I}}$ and set the fact that $d \in \pi(\varphi)^{\mathcal{I}}$ and set the fact that $d \in \pi(\varphi)^{\mathcal{I}}$ satisfies the fact that $\Phi(\varphi)^{\mathcal{I}}$ satisfies the fact that $\Phi(\varphi)^{$

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

BURG

How hard does it get?

Is ALC unsatisfiability and subsumption also complete for co-NP?

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Is ALC unsatisfiability and subsumption also complete for co-NP?
- Unlikely since models of a single concept description can already become exponentially large!

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Is ALC unsatisfiability and subsumption also complete for co-NP?
- Unlikely since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisifiability in the modal logic *K*.
- Satisifiability and unsatisfiability in *K* is PSPACE-complete.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Lower bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Lower bound for \mathcal{ALC})

 ${\cal ALC}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

$$\Box \psi \mapsto \forall b.\pi(\psi) \\ \Diamond \psi \mapsto \exists b.\pi(\psi)$$

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

13/30

Lemma (Lower bound for \mathcal{ALC})

 ${\cal ALC}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

 $\Box \psi \mapsto \forall b.\pi(\psi) \\ \Diamond \psi \mapsto \exists b.\pi(\psi)$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction).

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Lower bound for \mathcal{ALC})

 ${\cal ALC}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

 $\Box \psi \mapsto \forall b.\pi(\psi) \\ \Diamond \psi \mapsto \exists b.\pi(\psi)$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

BURG

Lemma (Lower bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

 $\Box \psi \mapsto \forall b.\pi(\psi) \\ \Diamond \psi \mapsto \exists b.\pi(\psi)$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.

December 7, 2015

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

BURG

13/30

Lemma (Upper Bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Upper Bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} .

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Upper Bound for $\mathcal{ALC})$

ALC subsumption, unsatisfiability and satisfiability are all in *PSPACE*.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Upper Bound for \mathcal{ALC})

ALC subsumption, unsatisfiability and satisfiability are all in *PSPACE*.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE. Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Upper Bound for $\mathcal{ALC})$

ALC subsumption, unsatisfiability and satisfiability are all in *PSPACE*.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of ALC)

 ${\cal ALC}$ subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

December 7, 2015

Nebel, Wölfl, Lindner - KR&R

14/30

Further consequences of the reducibility of K to \mathcal{ALC}

In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol? Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - → The multi-modal logic K_n has *n* different Box operators \Box_i (for *n* different agents).
 - $\rightsquigarrow \mathcal{ALC}$ (wrt. TBox reasoning) is a notational variant of K_n . [Schild, IJCAI-91]

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - → The multi-modal logic K_n has *n* different Box operators \Box_i (for *n* different agents).
 - $\rightsquigarrow \mathcal{ALC}$ (wrt. TBox reasoning) is a notational variant of K_n . [Schild, IJCAI-91]
- Are there other modal logics that correspond to other descriptions logics?

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - → The multi-modal logic K_n has *n* different Box operators \Box_i (for *n* different agents).
 - $\rightsquigarrow \mathcal{ALC}$ (wrt. TBox reasoning) is a notational variant of K_n . [Schild, IJCAI-91]
- Are there other modal logics that correspond to other descriptions logics?
 - propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - → The multi-modal logic K_n has *n* different Box operators \Box_i (for *n* different agents).
 - $\rightsquigarrow \mathcal{ALC}$ (wrt. TBox reasoning) is a notational variant of K_n . [Schild, IJCAI-91]
- Are there other modal logics that correspond to other descriptions logics?
 - propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
- DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics.
- Algorithms and complexity results can be borrowed. Works also the other way around.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

BURG

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Expressive Power vs. Complexity

Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL*⁻ vs. *ALC*. Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL*⁻ vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL*⁻ vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - Use only small description logics with complete inference algorithms.

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL*⁻ vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - 1 Use only small description logics with complete inference algorithms.
 - 2 Use expressive description logics, but employ incomplete inference algorithms.

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL*⁻ vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - 1 Use only small description logics with complete inference algorithms.
 - 2 Use expressive description logics, but employ incomplete inference algorithms.
 - Use expressive description logics with complete inference algorithms.

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

18/30

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL*⁻ vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - 1 Use only small description logics with complete inference algorithms.
 - 2 Use expressive description logics, but employ incomplete inference algorithms.
 - 3 Use expressive description logics with complete inference algorithms.
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

18/30

Nebel, Wölfl, Lindner - KR&R

The Complexity of Subsumption in TBoxes

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox. Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time ...

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time ...
- In the following example unfolding leads to an exponential blowup:

$$C_{1} \stackrel{!}{=} \forall r.C_{0} \sqcap \forall s.C_{0}$$

$$C_{2} \stackrel{!}{=} \forall r.C_{1} \sqcap \forall s.C_{1}$$

$$\vdots$$

$$C_{n} \stackrel{!}{=} \forall r.C_{n-1} \sqcap \forall s.C_{n-1}$$

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time ...
- In the following example unfolding leads to an exponential blowup:

$$C_{1} = \forall r.C_{0} \sqcap \forall s.C_{0}$$

$$C_{2} = \forall r.C_{1} \sqcap \forall s.C_{1}$$

$$\vdots$$

$$C_{1} \lor \forall r.C_{1} \sqcap \forall s.C_{1}$$

$$C_n \doteq \forall r. C_{n-1} \sqcap \forall s. C_{n-1}$$

Decidability & Undecidability

> Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

21/30

Unfolding C_n leads to a concept description with a size $\Omega(2^n)$.

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time ...
- In the following example unfolding leads to an exponential blowup:

$$C_1 \doteq \forall r.C_0 \sqcap \forall s.C_0$$
$$C_2 \doteq \forall r.C_1 \sqcap \forall s.C_1$$
$$\vdots$$

$$C_n \stackrel{\cdot}{=} \forall r.C_{n-1} \sqcap \forall s.C_{n-1}$$

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

- Unfolding C_n leads to a concept description with a size $\Omega(2^n)$.
- Is it possible to avoid this blowup? Can we avoid exponential preprocessing?

December 7, 2015

Nebel, Wölfl, Lindner - KR&R

Question: Can we decide in polynomial time TBox subsumption for a description logic such as *FL*⁻, for which concept subsumption in the empty TBox can be decided in polynomial time? Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as *FL*⁻, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider \mathcal{FL}_0 : $C \sqcap D$, $\forall r.C$ with terminological axioms.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as *FL*⁻, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider \mathcal{FL}_0 : $C \sqcap D$, $\forall r.C$ with terminological axioms.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as *FL*⁻, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider \mathcal{FL}_0 : $C \sqcap D$, $\forall r.C$ with terminological axioms.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
- Unfolding + strucural subsumption gives us an exponential algorithm.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

22/30

Complexity of TBox subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Complexity of TBox subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for cycle-free automatons and PSPACE-complete for general NDFAs.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Complexity of TBox subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for cycle-free automatons and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a \mathcal{FL}_0 -terminology with the mapping π as follows:

automaton $A \mapsto$ terminology \mathcal{T}_A

state $q \mapsto$ concept name q

terminal state $q_f \mapsto \text{concept name } q_f$

input symbol $r \mapsto$ role name r

r-transition from *q* to $q' \mapsto q = \dots \sqcap \forall r : q' \sqcap \dots$

December 7, 2015

Nebel, Wölfl, Lindner - KR&R

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

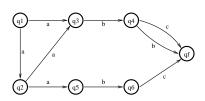
The Complexity of Subsumption in TBoxes

Outlook

Literature

23/30

"Proof" by example



 $q_1 = \forall a.q_3 \sqcap \forall a.q_2$ $q_2 = \forall a.q_3 \sqcap \forall a.q_5$ $q_3 = \forall b.q_4$ $q_4 \doteq \forall b.q_f \sqcap \forall c.q_f$ $q_5 = \forall b.q_6$ $a_6 = \forall b.a_f$ $q_1 \equiv \forall abc.q_f \sqcap \forall abb.q_f \sqcap$ $\forall aabc.g_f \sqcap \forall aabb.g_f$ $q_2 \equiv \forall abb.q_f \sqcap \forall abc.q_f$ $q_1 \sqsubset_{\mathcal{T}} q_2$ and $\mathcal{L}(q_2) \subseteq \mathcal{L}(q_1)$ Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

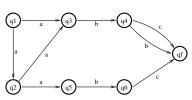
Outlook

Literature

BURG

December 7, 2015

"Proof" by example



 $q_1 = \forall a.q_3 \sqcap \forall a.q_2$ $q_2 = \forall a.q_3 \sqcap \forall a.q_5$ $q_3 = \forall b.q_4$ $q_4 \doteq \forall b.q_f \sqcap \forall c.q_f$ $a_5 = \forall b.a_6$ $a_6 = \forall b.a_f$ $q_1 \equiv \forall abc.q_f \sqcap \forall abb.q_f \sqcap$ $\forall aabc.q_f \sqcap \forall aabb.q_f$ $q_2 \equiv \forall abb.q_f \sqcap \forall abc.q_f$ $q_1 \sqsubset_{\mathcal{T}} q_2$ and $\mathcal{L}(q_2) \subseteq \mathcal{L}(q_1)$ Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

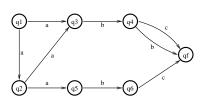
The Complexity of Subsumption in TBoxes

Outlook

Literature

In general, we have: $\mathcal{L}(q) \subseteq \mathcal{L}(q')$ iff $q' \sqsubseteq_{\mathcal{T}} q$

"Proof" by example



 $q_1 = \forall a.q_3 \sqcap \forall a.q_2$ $q_2 = \forall a.q_3 \sqcap \forall a.q_5$ $q_3 = \forall b.q_4$ $a_4 = \forall b.q_f \sqcap \forall c.q_f$ $a_5 = \forall b.a_6$ $a_6 = \forall b.a_f$ $q_1 \equiv \forall abc.q_f \sqcap \forall abb.q_f \sqcap$ $\forall aabc.q_f \sqcap \forall aabb.q_f$ $q_2 \equiv \forall abb.q_f \sqcap \forall abc.q_f$ $q_1 \sqsubseteq_{\mathcal{T}} q_2$ and $\mathcal{L}(q_2) \subseteq \mathcal{L}(q_1)$ Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

In general, we have: $\mathcal{L}(q) \subseteq \mathcal{L}(q')$ iff $q' \sqsubseteq_{\mathcal{T}} q$, from which the correctness of the reduction and the complexity result follows.

Nebel, Wölfl, Lindner - KR&R

Note that for expressive languages such as ALC, we do not notice any difference! Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding ...

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding ...
- Similarly, also for ALC concept descriptions, one notices that they are usually very well behaved.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Outlook

Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{c} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
- Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
- Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF).

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

BURG

December 7, 2015

Nebel, Wölfl, Lindner - KR&R

28 / 30

Literature I

Bernhard Nebel and Gert Smolka.

Attributive description formalisms ... and the rest of the world.

In: Otthein Herzog and Claus-Rainer Rollinger, editors, **Text Understanding in LILOG**, pages 439–452. Springer-Verlag, Berlin, Heidelberg, New York, 1991.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.

Tractable concept languages.

In: **Proceedings of the 12th International Joint Conference on Artificial Intelligence**, pages 458–465, Sydney, Australia, August 1991. Morgan Kaufmann. Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature II

Klaus Schild.

A correspondence theory for terminological logics: Preliminary report.

In **Proceedings of the 12th International Joint Conference on Artificial Intelligence**, pages 466–471, Sydney, Australia, August 1991. Morgan Kaufmann.

I. Horrocks, U. Sattler, and S. Tobies.

Reasoning with Individuals for the Description Logic SHIQ.

In: David MacAllester, ed., **Proceedings of the 17th International Conference on Automated Deduction (CADE-17)**, Germany, 2000. Springer Verlag.

B. Nebel.

Terminological Reasoning is Inherently Intractable,

Artificial Intelligence, 43: 235-249, 1990.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

