

The logical approach

3 Syntax		
		Why Logic?
		Proposi- tional Logic
		Syntax
		Semantics
		Terminology
		Decision Problems and Resolution
		BURG
October 21, 2015	Nebel, Wölfl, Lindner – KR&R	11 / 40

Language and meta-language Why Logic? Propositional Logic Syntax ($a \lor b$) is an expression of the language of propositional Semantics logic. Terminology • $\varphi ::= a | \dots | (\varphi' \leftrightarrow \varphi'')$ is a statement about how expressions Decision in the language of propositional logic can be formed. It is Problems and stated using meta-language. In order to describe how expressions (in this case formulae) can be formed, we use meta-language. When we describe how to interpret formulae, we use meta-language expressions. BURG **FREI** Nebel, Wölfl, Lindner - KR&R October 21, 2015 13/40

Example

Terminology				
			Why Logic?	
An interpretation	\mathcal{I} is a model of φ iff $\mathcal{I} \models \varphi$.		Proposi- tional Logic	
A formula φ is			Syntax	
 catiefiable if 	there is an \mathcal{T} such that $\mathcal{T} \vdash \alpha$:		Semantics	
satisfiable if there is an \mathcal{L} such that $\mathcal{L} \models \varphi$;				
unsatisfiable, otherwise; and				
• valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} (or tautology);				
 falsifiable, o 	therwise.			
Formulae φ and all interpretations	ψ are logically equivalent (symetry $\mathcal{I},$	b. $\varphi \equiv \psi$) if for		
	$\mathcal{I} \models \varphi$ iff $\mathcal{I} \models \psi$.			
October 21, 2015	Nebel, Wölfl, Lindner – KR&R	21/40	FREBURG	

Satisfiable, unsatisfiable, falsifiable, valid? $(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$ \rightsquigarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$ \rightsquigarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$ $((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$ \rightsquigarrow satisfiable: $a \mapsto T, b \mapsto T$ ~> valid: Consider all interpretations or argue about falsifying ones. Equivalence? $\neg(a \lor b) \equiv \neg a \land \neg b$ → Of course, equivalent (de Morgan). NE October 21, 2015 Nebel, Wölfl, Lindner - KR&R 22 / 40

Why Logic?

Propositional Logic

Syntax Semantics

Terminology

Decision Problems and Resolution

BURG

Some equiv	valences						
							Why Logic?
simplifications	$oldsymbol{arphi} ightarrow oldsymbol{\psi}$	\equiv	$\neg \phi \lor \psi$	$\phi \leftrightarrow \psi$	≡	$(arphi ightarrow \psi) \wedge$	Proposi- tional Logic
						$(\psi ightarrow arphi)$	Syntax
idempotency	$\pmb{\varphi} \lor \pmb{\varphi}$	\equiv	φ	$oldsymbol{arphi}\wedgeoldsymbol{arphi}$	\equiv	φ	Semantics
commutativity	$\pmb{\varphi} \lor \pmb{\psi}$	\equiv	$\psi \lor \varphi$	$oldsymbol{arphi}\wedgeoldsymbol{\psi}$	\equiv	$oldsymbol{\psi} \wedge oldsymbol{arphi}$	Terminology
associativity	$(\varphi \lor \psi) \lor \chi$	\equiv	$\varphi \lor (\psi \lor \chi)$	$(\varphi \wedge \psi) \wedge \chi$	\equiv	$arphi \wedge (\psi \wedge \chi)$	Decision
absorption	$oldsymbol{arphi} arphi \wedge oldsymbol{arphi}$)	\equiv	φ	$oldsymbol{arphi} \wedge (oldsymbol{arphi} ee oldsymbol{\psi})$	\equiv	φ	Problems and
distributivity	$\varphi \wedge (\psi \lor \chi)$	\equiv	$(oldsymbol{arphi}\wedgeoldsymbol{\psi})arphi$	$\varphi \lor (\psi \land \chi)$	\equiv	$(arphi \lor \psi) \land$	Resolution
			$(oldsymbol{arphi}\wedge\chi)$			$(arphi ee \chi)$	
double negation	$\neg \neg \varphi$	\equiv	φ			_	
constants	$\neg \top$	\equiv	\perp	$\neg \bot$	\equiv	Т	
De Morgan	$ eg(\varphi \lor \psi)$	\equiv	$\neg \phi \land \neg \psi$	$ eg(\varphi \wedge \psi)$	≡	$\neg \phi \lor \neg \psi$	
truth	arphi ee o o	\equiv	Т	$oldsymbol{arphi}\wedge op$	\equiv	φ	
falsity	$arphi ee \perp$	\equiv	φ	$\phi \wedge \bot$	\equiv	\perp	
taut./contrad.	$\varphi \lor \neg \varphi$	\equiv	Т	$oldsymbol{arphi}\wedge eg oldsymbol{arphi}$	\equiv	\perp	
October 21, 2015	Ne	ebel, V	/ölfl, Lindner – KR&l	R		24 / 40	P

Some obvious	consequences		
			Why Logic?
Proposition			Proposi- tional Logic
Ποροδιιοπ			Syntax
φ is valid iff $\neg \varphi$ is u	unsatisfiable.		Semantics
ϕ is satisfiable iff –	${}^{\phi}\phi$ is falsifiable.		Terminology
$\begin{array}{l} Proposition \\ \varphi \equiv \psi \ \textit{iff} \ \varphi \leftrightarrow \psi \ \textit{is} \end{array}$	valid.		Decision Problems and Resolution
Theorem If $\varphi \equiv \psi$, and χ' rescaled $\chi' = \chi'$	sults from substituting ϕ by ψ in χ ,	then	
$\chi = \chi$. October 21, 2015	Nebel, Wölfi, Lindner – KR&R	23 / 40	UNI FREBURG

Negation normal form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Proof.

First eliminate \rightarrow and \leftrightarrow by the appropriate equivalences. Base case: Claim is true for $a, \neg a, \top, \bot$. Inductive case: Assume claim is true for all formulae φ (up to a certain number of connectives) and call its NNF $nnf(\phi)$.

 $\blacksquare \operatorname{nnf}(\phi \land \psi) = (\operatorname{nnf}(\phi) \land \operatorname{nnf}(\psi))$

- $\blacksquare \operatorname{nnf}(\phi \lor \psi) = (\operatorname{nnf}(\phi) \lor \operatorname{nnf}(\psi))$
- $\blacksquare \operatorname{nnf}(\neg(\phi \land \psi)) = (\operatorname{nnf}(\neg \phi) \lor \operatorname{nnf}(\neg \psi))$
- $\blacksquare \operatorname{nnf}(\neg(\phi \lor \psi)) = (\operatorname{nnf}(\neg\phi) \land \operatorname{nnf}(\neg\psi))$

October 21, 2015

Normal forms Why Logic? Terminology: Propositional Logic Atomic formulae a, negated atomic formulae $\neg a$, truth \top Syntax and falsity \perp are literals. A disjunction of literals is a clause. Terminology Decision If \neg only occurs in front of an atom and there are no \rightarrow and Problems and \leftrightarrow , the formula is in negation normal form (NNF). Example: $(\neg a \lor \neg b) \land c$, but not: $\neg (a \land b) \land c$ A conjunction of clauses is in conjunctive normal form (CNF). Example: $(a \lor b) \land (\neg a \lor c)$ The dual form (disjunction of conjunctions of literals) is in disjunctive normal form (DNF). BURG

Example: $(a \land b) \lor (\neg a \land c)$

October 21, 2015

Why Logic?

tional Logic

Semantics

Terminology

Problems and

Resolution

BURG

28 / 40

Decision

Proposi-

Syntax

Nebel, Wölfl, Lindner - KR&R

Conjunctive normal form Why Logic? Theorem Propositional Logi For each propositional formula there exist logically equivalent Syntax formulae in CNF and DNF, respectively. Terminology Decision Proof. Problems and Resolution The claim is true for $a, \neg a, \top, \bot$. Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its CNF $cnf(\phi)$ (and its DNF $dnf(\phi)$). • $\operatorname{cnf}(\neg \varphi) = \operatorname{nnf}(\neg \operatorname{dnf}(\varphi))$ and $\operatorname{cnf}(\varphi \land \psi) = \operatorname{cnf}(\varphi) \land \operatorname{cnf}(\psi)$. Assume $cnf(\phi) = \bigwedge_i \chi_i$ and $cnf(\psi) = \bigwedge_i \rho_i$ with χ_i, ρ_j being clauses. Then $\operatorname{cnf}(\varphi \lor \psi) = \operatorname{cnf}((\bigwedge_i \chi_i) \lor (\bigwedge_i \rho_i)) = \bigwedge_i \bigwedge_i (\chi_i \lor \rho_i)$ (by distributivity) Similar for $dnf(\phi)$. URG

October 21, 2015

NE

27 / 40

Resolution:	derivations
--------------------	-------------

D can be derived from	Δ by resolution (symbolical)	$v \Delta \vdash D$) if	Why Logic?
there is a sequence C	$1, \ldots, C_n$ of clauses such that	t	Proposi- tional Logic
1 $C_n = D$ and $C_i \in I$	$R(\Delta \cup \{C_1, \ldots, C_{i-1}\}), \text{ for all }$	$i \in \{1,\ldots,n\}.$	Syntax
Define $\mathbf{R}^*(\Lambda) = \{D \mid \Lambda\}$	⊢ ∩ }		Semantics
$Define H (\Delta) = \{D \mid \Delta$			Terminology
Theorem (Soundnes	ss of resolution)		Decision Brobloms and
Lat D be a clause of A	b D then A D		Resolution
Let D be a clause. If D	$\Delta \vdash D$ then $\Delta \models D$.		Completeness Resolution Strategies
Proof idea.			Horn Clauses
Show $\Delta \models D$ if $D \in R(\Delta)$ an	d use induction on proof length.		
Let $C_1 \cup \{I\}$ and $C_2 \cup \{\overline{I}\}$ b	be the parent clauses of D = $C_1 \cup C$	2.	
Assume $\mathcal{I} \models \Delta$, we have to	show $\mathcal{I} \models D$.		
Case 1: $\mathcal{I} \models I$ then $\exists m \in C$	\mathcal{I}_2 s.t. $\mathcal{I} \models m$. This implies $\mathcal{I} \models D$.		
Case 2: $\mathcal{I} \models I$ similarly, $\exists m$	$\in C_1$ s.t. $\mathcal{I} \models m$.	_	13
I his means that each mode	el \mathcal{I} of Δ also satisfies <i>D</i> , i.e., $\Delta \models \mathcal{I}$	<i>D</i> .	UR
October 21, 2015	Nebel, Wölfl, Lindner – KR&R	36 / 40	55

Resolution str	ategies		
			Why Logic?
			Proposi- tional Logic
Trying out all	different resolutions can be very cost	tly,	Syntax
and might no	t be necessary.		Semantics
There are diff	erent resolution strategies		Terminology
 Examples: Input resorres parent cla Unit resorres parent cla Not all structure in others. 	olution $(R_I(\cdot))$: In each resolution step, or auses must be a clause of the input set. lution $(R_U(\cdot))$: In each resolution step, or auses must be a unit clause. rategies are (refutation) completeness pr aput nor unit resolution is. However, there	ne of the ne of the reserving. e are	Decision Problems and Resolution Completeness Resolution Strangies Horn Clauses
October 21, 2015	Nebel, Wölfl, Lindner – KR&R	38 / 40	UNI FREIBURG

Literature	2		
			Why Logic?
-			Proposi- tional Logic
Harry R.	Lewis and Christos H. Papadimitriou.		Syntax
Elements Prentice-	s of the Theory of Computation.		Semantics
			Terminology
Logic – A Addison-V	A Foundation for Computer Science. Wesley, Reading, MA, 1991 (Chapters 1–3).		Decision Problems and Resolution Completeness
HP. Ebb Einführu Wissenso	binghaus, J. Flum, and W. Thomas. Ing in die mathematische Logik. shaftliche Buchgesellschaft, Darmstadt, 1986.		Resolution Strategies Horn Clauses
U. Schön Logik für Spektrum	ing. r Informatiker. n-Verlag, 5th edition, 2000.		
October 21, 2015	Nebel Wölfl Lindner – KB&B	40 / 40	