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Why logic?

Logic is one of the best developed systems for representing
knowledge.
Can be used for analysis, design and specification.
Understanding formal logic is a prerequisite for
understanding most research papers in KR&R.
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The right logic. . .

Logics of different orders (1st, 2nd, ...)
Modal logics

epistemic
temporal
dynamic (program)
multi-modal logics
. . .

Many-valued logics
Nonmonotonic logics
Intuitionistic logics
. . .

October 21, 2015 Nebel, Wölfl, Lindner – KR&R 5 / 40



Why Logic?

Proposi-
tional Logic

Syntax

Semantics

Terminology

Decision
Problems and
Resolution

The logical approach

Define a formal language: logical & non-logical symbols,
syntax rules
Provide language with compositional semantics:

Fix universe of discourse
Specify how the non-logical symbols can be interpreted:
interpretation
Rules how to combine interpretation of single symbols
Satisfying interpretation = model
Semantics often entails concept of logical
implication/entailment

Specify a calculus that allows to derive new formulae from
old ones – according to the entailment relation
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Propositional logic: main ideas

Non-logical symbols: propositional variables or atoms
representing propositions which cannot be decomposed
which can be true or false (for example: “Snow is white”, “It
rains”)

Logical symbols: propositional connectives such as:
and (∧), or (∨), and not (¬)
Formulae: built out of atoms and connectives
Universe of discourse: truth values

October 21, 2015 Nebel, Wölfl, Lindner – KR&R 9 / 40

Why Logic?

Proposi-
tional Logic

Syntax

Semantics

Terminology

Decision
Problems and
Resolution

3 Syntax

October 21, 2015 Nebel, Wölfl, Lindner – KR&R 11 / 40



Why Logic?

Proposi-
tional Logic

Syntax

Semantics

Terminology

Decision
Problems and
Resolution

Syntax

Countable alphabet Σ of propositional variables: a,b,c, . . .
Propositional formulae are built according to the following rule:

ϕ ::= a atomic formula
| ⊥ falsity
| > truth
| ¬ϕ ′ negation
| (ϕ ′∧ϕ ′′) conjunction
| (ϕ ′∨ϕ ′′) disjunction
| (ϕ ′→ ϕ ′′) implication
| (ϕ ′↔ ϕ ′′) equivalence

Parentheses can be omitted if no ambiguity arises.
Operator precedence: ¬> ∧> ∨> → = ↔.
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Language and meta-language

(a∨b) is an expression of the language of propositional
logic.
ϕ ::= a| . . . |(ϕ ′↔ ϕ ′′) is a statement about how expressions
in the language of propositional logic can be formed. It is
stated using meta-language.
In order to describe how expressions (in this case formulae)
can be formed, we use meta-language.
When we describe how to interpret formulae, we use
meta-language expressions.
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Semantics: idea

Atomic propositions can be true (1,T ) or false (0,F ).
Provided the truth values of the atoms have been fixed
(truth assignment or interpretation), the truth value of a
formula can be computed from the truth values of the atoms
and the connectives.
Example:

(a∨b)∧ c

is true iff c is true and, additionally, a or b is true.

Logical implication can then be defined as follows:
ϕ is implied by a set of formulae Θ iff ϕ is true for all truth
assignments (world states) that make all formulae in Θ true.
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Formal semantics

An interpretation (or truth assignment) over Σ is a function:

I : Σ→{T ,F}.

A formula ψ is true under I or is satisfied by I (symb. I |= ψ):

I |= a iff I(a) = T
I |=>
I 6|=⊥

I |= ¬ϕ iff I 6|= ϕ

I |= ϕ ∧ϕ
′ iff I |= ϕ and I |= ϕ

′

I |= ϕ ∨ϕ
′ iff I |= ϕ or I |= ϕ

′

I |= ϕ → ϕ
′ iff ifI |= ϕ then I |= ϕ ′

I |= ϕ ↔ ϕ
′ iff I |= ϕ if and only if I |= ϕ ′
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Example

Given

I : a 7→ T , b 7→ F , c 7→ F , d 7→ T ,

Is ((a∨b)↔ (c∨d))∧ (¬(a∧ c)∨ (c∧¬d)) true or false?

((a∨b)↔ (c∨d))∧ (¬(a∧c)∨ (c∧¬d))

((a∨b)↔ (c∨d))∧ (¬(a∧c)∨ (c∧¬d))

((a∨b)↔ (c∨d))∧ (¬(a∧c)∨ (c∧¬d))

((a∨b)↔ (c∨d))∧ (¬(a∧c)∨ (c∧¬d))

((a∨b)↔ (c∨d))∧ (¬(a∧c)∨ (c∧¬d))
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Terminology

An interpretation I is a model of ϕ iff I |= ϕ .
A formula ϕ is

satisfiable if there is an I such that I |= ϕ ;
unsatisfiable, otherwise; and
valid if I |= ϕ for each I (or tautology);
falsifiable, otherwise.

Formulae ϕ and ψ are logically equivalent (symb. ϕ ≡ ψ) if for
all interpretations I,

I |= ϕ iff I |= ψ.
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Examples

Satisfiable, unsatisfiable, falsifiable, valid?

(a∨b∨¬c)∧ (¬a∨¬b∨d)∧ (¬a∨b∨¬d)

 satisfiable: a 7→ T ,b 7→ F ,d 7→ F , . . .
 falsifiable: a 7→ F ,b 7→ F ,c 7→ T , . . .

((¬a→¬b)→ (b→ a))

 satisfiable: a 7→ T ,b 7→ T
 valid: Consider all interpretations or argue about falsifying

ones.

Equivalence? ¬(a∨b)≡ ¬a∧¬b

 Of course, equivalent (de Morgan).
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Some obvious consequences

Proposition

ϕ is valid iff ¬ϕ is unsatisfiable.
ϕ is satisfiable iff ¬ϕ is falsifiable.

Proposition

ϕ ≡ ψ iff ϕ ↔ ψ is valid.

Theorem
If ϕ ≡ ψ , and χ ′ results from substituting ϕ by ψ in χ , then
χ ′ ≡ χ .
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Some equivalences

simplifications ϕ → ψ ≡ ¬ϕ ∨ψ ϕ ↔ ψ ≡ (ϕ → ψ)∧
(ψ → ϕ)

idempotency ϕ ∨ϕ ≡ ϕ ϕ ∧ϕ ≡ ϕ

commutativity ϕ ∨ψ ≡ ψ ∨ϕ ϕ ∧ψ ≡ ψ ∧ϕ

associativity (ϕ ∨ψ)∨χ ≡ ϕ ∨ (ψ ∨χ) (ϕ ∧ψ)∧χ ≡ ϕ ∧ (ψ ∧χ)
absorption ϕ ∨ (ϕ ∧ψ) ≡ ϕ ϕ ∧ (ϕ ∨ψ) ≡ ϕ

distributivity ϕ ∧ (ψ ∨χ) ≡ (ϕ ∧ψ)∨
(ϕ ∧χ)

ϕ ∨ (ψ ∧χ) ≡ (ϕ ∨ψ)∧
(ϕ ∨χ)

double negation ¬¬ϕ ≡ ϕ

constants ¬> ≡ ⊥ ¬⊥ ≡ >
De Morgan ¬(ϕ ∨ψ) ≡ ¬ϕ ∧¬ψ ¬(ϕ ∧ψ) ≡ ¬ϕ ∨¬ψ

truth ϕ ∨> ≡ > ϕ ∧> ≡ ϕ

falsity ϕ ∨⊥ ≡ ϕ ϕ ∧⊥ ≡ ⊥
taut./contrad. ϕ ∨¬ϕ ≡ > ϕ ∧¬ϕ ≡ ⊥
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How many different formulae are there . . .

. . . for a given finite alphabet Σ?

Infinitely many: a,a∨a,a∧a,a∨a∨a, . . .
How many different logically distinguishable (not equivalent)
formulae?

A formula can be characterized by its set of models
(if two formulae are not logically equivalent, then their sets
of models differ).
For Σ with n = |Σ|, there are 2n different interpretations.
There are 2(2n) different sets of interpretations.
There are 2(2n) (logical) equivalence classes of formulae.
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Logical implication

Extension of the relation |= to sets Θ of formulae:

I |= Θ iff I |= ϕ for all ϕ ∈ Θ.

ϕ is logically implied by Θ (symbolically Θ |= ϕ) iff ϕ is true
in all models of Θ:

Θ |= ϕ iff I |= ϕ for all I such that I |= Θ

Some consequences:
Deduction theorem: Θ∪{ϕ} |= ψ iff Θ |= ϕ → ψ

Contraposition: Θ∪{ϕ} |= ¬ψ iff Θ∪{ψ} |= ¬ϕ

Contradiction: Θ∪{ϕ} is unsatisfiable iff Θ |= ¬ϕ
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Normal forms

Terminology:
Atomic formulae a, negated atomic formulae ¬a, truth >
and falsity ⊥ are literals.
A disjunction of literals is a clause.
If ¬ only occurs in front of an atom and there are no→ and
↔, the formula is in negation normal form (NNF).
Example: (¬a∨¬b)∧ c, but not: ¬(a∧b)∧ c
A conjunction of clauses is in conjunctive normal form
(CNF).
Example: (a∨b)∧ (¬a∨ c)
The dual form (disjunction of conjunctions of literals) is in
disjunctive normal form (DNF).
Example: (a∧b)∨ (¬a∧ c)
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Negation normal form

Theorem
For each propositional formula there is a logically equivalent
formula in NNF.

Proof.
First eliminate→ and↔ by the appropriate equivalences.
Base case: Claim is true for a, ¬a, >, ⊥.
Inductive case: Assume claim is true for all formulae ϕ (up to a certain
number of connectives) and call its NNF nnf(ϕ).

nnf(ϕ ∧ψ) = (nnf(ϕ)∧nnf(ψ))

nnf(ϕ ∨ψ) = (nnf(ϕ)∨nnf(ψ))

nnf(¬(ϕ ∧ψ)) = (nnf(¬ϕ)∨nnf(¬ψ))

nnf(¬(ϕ ∨ψ)) = (nnf(¬ϕ)∧nnf(¬ψ))

nnf(¬¬ϕ) = nnf(ϕ)
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Conjunctive normal form

Theorem
For each propositional formula there exist logically equivalent
formulae in CNF and DNF, respectively.

Proof.
The claim is true for a, ¬a, >, ⊥.
Let us assume it is true for all formulae ϕ (up to a certain number of
connectives) and call its CNF cnf(ϕ) (and its DNF dnf(ϕ)).

cnf(¬ϕ) = nnf(¬dnf(ϕ)) and cnf(ϕ ∧ψ) = cnf(ϕ)∧ cnf(ψ).

Assume cnf(ϕ) =
∧

i χi and cnf(ψ) =
∧

j ρj with χi ,ρj being clauses.
Then cnf(ϕ ∨ψ) = cnf((

∧
i χi )∨ (

∧
j ρj )) =

∧
i
∧

j (χi ∨ρj ) (by distributivity)

Similar for dnf(ϕ).
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How to decide properties of formulae

How do we decide whether a formula is satisfiable, unsatisfiable,
valid, or falsifiable?
Note: Satisfiability and falsifiability are NP-complete. Validity and
unsatisfiability are co-NP-complete.

A CNF formula is valid iff all clauses contain two complementary
literals or >.

A DNF formula is satisfiable iff one disjunct does not contain ⊥ or
two complementary literals.

However, transformation to CNF or DNF may take exponential
time (and space!).

One can try out all truth assignments.

One can test systematically for satisfying truth assignments
(backtracking) Davis-Putnam-Logemann-Loveland.
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Deciding entailment

We want to decide Θ |= ϕ .
Use deduction theorem and reduce to validity:

Θ |= ϕ iff
∧

Θ→ ϕ is valid.

Now negate and test for unsatisfiability using DPLL.
Different approach: Try to derive ϕ from Θ – find a proof of
ϕ from Θ.
Use inference rules to derive new formulae from Θ.
Continue to deduce new formulae until ϕ can be deduced.
One particular calculus: resolution.
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Resolution: representation

We assume that all formulae are in CNF.
Can be generated using the described method.
Often formulae are already close to CNF.
There is a “cheap” conversion from arbitrary formulae to
CNF that preserves satisfiability – which is enough as we
will see.

More convenient representation:
CNF formula is represented as a set.
Each clause is a set of literals.
(a∨¬b)∧ (¬a∨ c)  {{a,¬b},{¬a,c}}

Empty clause (symbolically �) and empty set of clauses
(symbolically /0) are different!
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Resolution: the inference rule

Let l be a literal and l its complement.

The resolution rule

C1
.
∪{l},C2

.
∪{l}

C1∪C2

C1∪C2 is the resolvent of the parent clauses C1∪{l} and
C2∪{l}. l and l are the resolution literals.
Example: {a,b,¬c} resolves with {a,d,c} to {a,b,d}.
Note: The resolvent is not logically equivalent to the set of parent
clauses!
Notation:

R(∆) = {C | C is resolvent of two clauses in ∆}
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Resolution: derivations

D can be derived from ∆ by resolution (symbolically ∆ ` D) if
there is a sequence C1, . . . ,Cn of clauses such that

1 Cn = D and Ci ∈ R(∆∪{C1, . . . ,Ci−1}), for all i ∈ {1, . . . ,n}.
Define R∗(∆) = {D | ∆ ` D}.

Theorem (Soundness of resolution)

Let D be a clause. If ∆ ` D then ∆ |= D.

Proof idea.
Show ∆ |= D if D ∈ R(∆) and use induction on proof length.
Let C1∪{l} and C2∪{l} be the parent clauses of D = C1∪C2.
Assume I |= ∆, we have to show I |= D.
Case 1: I |= l then ∃m ∈ C2 s.t. I |= m. This implies I |= D.
Case 2: I |= l similarly, ∃m ∈ C1 s.t. I |= m.
This means that each model I of ∆ also satisfies D, i.e., ∆ |= D.
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Resolution: completeness?

Do we have
∆ |= ϕ implies ∆ ` ϕ?

Of course, could only hold for CNF.
However: {

{a,b},{¬b,c}
}
|= {a,b,c}
6` {a,b,c}

However, one can show that resolution is refutation-complete:

∆ is unsatisfiable iff ∆ `�.

Entailment: Reduce to unsatisfiability testing and decide by
resolution.
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Resolution strategies

Trying out all different resolutions can be very costly,
and might not be necessary.
There are different resolution strategies.
Examples:

Input resolution (RI(·)): In each resolution step, one of the
parent clauses must be a clause of the input set.
Unit resolution (RU(·)): In each resolution step, one of the
parent clauses must be a unit clause.
Not all strategies are (refutation) completeness preserving.
Neither input nor unit resolution is. However, there are
others.
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Horn clauses & resolution

Horn clauses: Clauses with at most one positive literal
Example: (a∨¬b∨¬c), (¬b∨¬c)

Proposition

Unit resolution is refutation-complete for Horn clauses.

Proof idea.
Consider R∗U(∆) of Horn clause set ∆. We have to show that if
� 6∈ R∗U(∆), then ∆(≡ R∗U(∆)) is satisfiable.

Assign true to all unit clauses in R∗U(∆).
Those clauses that do not contain a literal l such that {l} is one of
the unit clauses have at least one negative literal.
Assign true to these literals.
Results in satisfying truth assignment for R∗U(∆) (and ∆ ⊆ R∗U(∆)).
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