
Principles of Knowledge Representation and Reasoning

B. Nebel, S. Wölfl, F. Lindner
Winter Semester 2015/2016

University of Freiburg
Department of Computer Science

Exercise Sheet 3
Due: November 11th, 2015

Exercise 3.1 (Formula Game and Reduction, 2 + 5)

(a) The Formula Game is a two-player game played on a given quantified
Boolean formula (in prenex normal form) Q1p1 . . . Qkpkψ. The rules are
simple: If the outermost unassigned variable pi is universally (existen-
tially) quantified, it is the turn of player U (player E resp.) who assigns a
truth value to that variable pi. Thus both players finally construct a truth
assignment I to the variables occurring in the matrix formula ψ. Player
E wins the game if I(ψ) = 1; otherwise, player U wins the game.

Check whether one of the players U or E has a strategy for winning the
formula game for the following formulae:

(a) ∀p∀q∃r∀s
(
(p ∧ r) → (q ∧ s)

)
(b) ∀p∃q∃r

(
(p→ q) ∧ (q → ¬r) ∧ (r ∨ ¬p)

)
(b) We consider the following two-player game G played on a directed graph

〈V,A〉 with a designated start node v0 ∈ V . Player 1 and player 2 choose
in turn some arc in the graph such that each chosen arc starts in the head
of the previously chosen arc. Player 1 begins with choosing an arc starting
in node v0. A player looses the game if s/he is unable to choose an arc to
a not yet visited node in the graph.

Show that the following problem is PSPACE-complete.

Instance: A directed graph 〈V,A〉, a start node v0.

Question: Does Player 1 have a strategy for winning G?

Hint: Existence of a winning strategy in the formula game (see exercise 3.1) is
known to be PSPACE-complete even for QBF of the following form:

∃x1∀x2∃x3∀x4 . . .∃x2k−1∀x2k∃x2k+1ψ,

where ψ is a 3-CNF formula. For the reduction construct for a given formula of
this form a directed graph. The following subgraphs will be useful:

• For each propositional variable introduce a subgraph with four nodes that
represents that a variable has been assigned a truth value.



I(xi) undefined

I(xi) = F I(xi) = T

I(xi) defined

The current player will have to decide on the truth value of the next
unassigned variable xi. Note that the node corresponding to the chosen
assignment may not be revisited in the game.

• Furthermore introduce nodes for each clause ci of ψ and the literals li1 ,
. . . , li3 occurring in it. For example, if ci = xi1 ∨ ¬xi2 ∨ xi3 :

ci

xi1 ¬xi2 xi3

I(xi1) = T I(xi2) = F I(xi3) = T

Finally discuss the size of your graph and relate the winning strategies in the

games.

Exercise 3.2 (Project: Handling Propositional Formulae, 1+3+2+4)

This exercise is a project. You are asked to write a small program that parses
propositional logic formulae, translates them to CNF, and decides their satis-
fiability by using an existing satisfiability solver. Please submit your code to
lindner@informatik.uni-freiburg.de until November 25th. You are free
to use Python, Java, or Scheme.
We restrict ourselves to postfix notation1 to keep parsing of the formula sim-
ple. In these formulae propositional variables are written as (non-zero) positive
integer numbers. Only the following propositional connectives are used: not

(unary), or (binary), and (binary). After parsing, a formula is internally repre-
sented as a binary tree (Figure 1 gives an example) and must be converted to
CNF.

¬

∧

1 ∨

2 ¬

3

Postfix notation: 3 not 2 or 1 and not

Formula: ¬
(
1 ∧ (2 ∨ ¬3)

)
NNF: ¬1 ∨ (¬2 ∧ 3)

CNF: (¬1 ∨ ¬2) ∧ (¬1 ∨ 3)

Figure 1: Example for postfix notation, formula, CNF, binary tree.

1 http://en.wikipedia.org/wiki/Postfix_notation

http://en.wikipedia.org/wiki/Postfix_notation


We consider both the standard CNF translation given in the lecture as well as
the labeling CNF conversion which is a faster CNF conversion that preserves
satisfiability. The labeling CNF conversion is explained in the document you can
obtain from http://eprints.biblio.unitn.it/1573/1/A_SAT-based_tool_

for_solving_configuration_problems.pdf (see Section 2.3.2). Roughly, the
main idea is to recursively label non-trivial subformulas θn with a new variable
bn, and to represent the original formula as a conjunction of terms of the form
θn ↔ bn. In the document you also find an extensive example (Example 2.3.1.).
Try to understand it first!
Moreover, in the document an improved version of the labeling CNF conversion,
which takes the polarity of subformulas into account, is discussed. You do not
need to implement this one.
For evaluating CNF formulae you can use an existing propositional satisfiability
solver (SAT solver), e.g., the MiniSat solver http://minisat.se/. Virtually
all SAT solvers accept as input the simple DIMACS format:

p cnf 5 2

1 -2 3 0

-1 2 5 4 0

The first line specifies that it is a CNF problem (p cnf) and gives the number
of variables and clauses (in this case 5 variables; atoms 1, . . . , 5 and 2 clauses).
Each of the following lines specifies one clause: positive integers represent posi-
tive literals, negative integers represent negative literals with 0 terminating the
clause/line.
Your tasks:

(a) Write a parser for the given postfix format that generates a binary tree
for a given formula (or use the python parser provided on the web).

(b) Write two functions to convert an arbitrary formula to CNF — one using
the standard conversion and the other using the labeling CNF conversion.

(c) Write a function which can generate random DNFs with conjunctions of
size exactly 3. The function must take as input: the number of conjunc-
tions and the number of variables.

(d) Write a function to output the CNF in DIMACS format and test the sat-
isfiability of randomly generated DNFs by converting them first in CNF,
then in DIMACS. Discuss the efficiency of the two translations.

Your program should take as argument one filename to read the formula from
and output the CNF in DIMACS on the standard output. It should not write
anything else than the DIMACS format in order to pipe the output as a Min-
iSat’s input.

http://eprints.biblio.unitn.it/1573/1/A_SAT-based_tool_for_solving_configuration_problems.pdf
http://eprints.biblio.unitn.it/1573/1/A_SAT-based_tool_for_solving_configuration_problems.pdf
http://minisat.se/

