Informatik I: Einführung in die Programmierung

7. Automaten: Akzeptoren & Transduktoren

INI REIBURG

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel

30. Oktober 2015

1 Endliche deterministische Automaten

T T

- Motivierendes Beispiel
- Formale Grundlagen
- Verhalten eines DEAs
- Teilstring-Erkennung

Endliche deterministische Automaten

Motivierendes Beispiel

Formale

Verhalten eines

DEAs Toiletring

Erkennung

Transduktoren

Welt & Modell

AI EIBUR

Vor kurzem war ich auf unserem Dachboden und fand einen Würfel und einen Brief.

Endliche deterministische Automaten

Motivierendes Beispiel

Grundlagen Verhalten eines DEAs

Teilstring-Erkennung

Transduktoren

Welt & Modell

Was steckt in dem Würfel?

- FREB
- In dem Würfel gibt es ein Mechanismus, der die Abfolge von nach oben gerichteten Würfelseiten erkennt.
- Nachdem die richtige Folge "gewürfelt" wurde, schlägt dann von innen ein kleines Männchen (oder ein Modellbauservo) mit einem Hämmerchen die Koordinaten.
- Uns interessiert hier, wie man solche Folgen von Ereignissen erkennen kann.
- Dazu kann man endliche Automaten als Akzeptoren einsetzen
- Der endliche Automat ist ein Konzept, das überall in der Informatik vorkommt.
- Endliche Automaten sind ein sehr eingeschränktes Berechnungsmodell, das aber oft adäquat ist und einfach einzusetzen ist

Endliche deterministische

Motivierendes Beisniel

Grundlagen Verhalten ein DEAs

Teilstring-Erkennung

Transduktoren

Welt & Modell

- Ein Alphabet ist eine endliche, nicht-leere Menge (von Symbolen oder Zeichen), meist mit Σ bezeichnet.
- In unserem Fall besteht das Eingabealphabet aus den Würfelseiten, d.h. $\Sigma = \{1, 2, 3, 4, 5, 6\}$.
- Ein Wort über einem Alphabet Σ ist eine Folge von Zeichen aus Σ, z.B. wäre 5156 ein Wort.
- Eine (formale) Sprache ist eine beliebige (endliche oder unendliche) Menge von Wörtern.
- Endliche Automaten kann man nutzen, um Sprachen zu akzeptieren.

Endliche deterministische Automaten

Formale

Grundlagen Verhalten eines

Teilstring-Erkennung

Transduktoren

Welt & Modell

Endliche Automaten: Akzeptoren

Endliche

Ein deterministischer endlicher Automat (DEA) ist ein Quintupel $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, wobei

- Q ist die endliche Zustandsmenge,
- Σ ist das Eingabealphabet,
- \bullet $\delta: Q \times \Sigma \rightarrow Q$ ist die Übergangsfunktion,
- q₀ ist der Anfangszustand,
- $F \subseteq Q$ ist die Menge der (akzeptierenden) Endzustände.

deterministische Automaten

Beispiel Formale

Formale Grundlagen

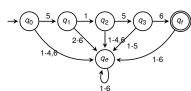
DEAs Teiletring

Teilstring-Erkennung

Transduktoren

Welt & Modell

Übergangsfunktion



INI REIBUR(

Die Übergangsfunktion wird entweder durch eine Übergangstabelle oder durch ein Übergangsdiagramm angegeben.

In unserem Fall (zu erkennendes Wort: 5156) könnte das wie folgt aussehen (q_e bezeichnet einen Fehlerzustand und $F = \{q_f\}$).

	1	2	3	4	5	6
q_0	q _e	q _e	q _e	q _e	<i>q</i> ₁	q _e
q_1	q_2	qe	qe	qe	qe	qe
q_2	q _e	q _e	q _e	q _e	q_3	q _e
q_3	q _e	q_f				
q_f	qe	qe	qe	qe	qe	qe
q _e	q _e					

Endliche deterministische Automaten

> Beispiel Formale

Formale Grundlagen

> erhalten eine: EAs

eilstringrkennung

Transdukto-

Welt &

Modell

Zusammenfassung & Ausblick

Beachte: In Übergangsdiagrammen wird der absorbierende Fehlerzustand q_e und alle Übergänge dorthin in der Regel nicht angegeben.

Verhalten eines endlichen Automaten

- Anfänglich befindet sich der Automat im Startzustand q_0 .
- Der Automat erhält ein Wort $w = a_1 a_2 ... a_n$ über Σ als Eingabe (darf auch leer sein, d.h. n = 0).
- Der Automat liest (beginnend bei a_1) jeweils ein Eingabezeichen a_i und basierend auf dem aktuellen Zustand q wechselt er in den Nachfolgezustand $q' = \delta(q, a_i)$.
- Das macht der Automat, so lange Eingabezeichen gelesen werden können.
- Ist am Ende der Automat in einem der Endzustände F, dann wird das Eingabewort w als akzeptiert angesehen.
- Ansonsten ist das Wort nicht akzeptiert.
- Die Menge aller von A akzeptierten Worte ist die von A akzeptierte (oder erkannte) Sprache oder einfach die Sprache von A, symbolisch ℒ(A).

Endliche deterministi sche Automaten

> Motivierendes Beispiel Formale

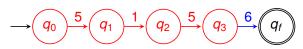
Formale Grundlagen Verhalten eines DEAs

eilstringrkennung

Transduktoren

Welt & Modell

Beispiele



FREIBL

Eingabe: 5156 5156 156 156 56 56 6 6 Eingabe akzeptiert

Kein Übergang von q_3 aus möglich! Eingabe nicht akzeptiert.

Endliche deterministische Automaten

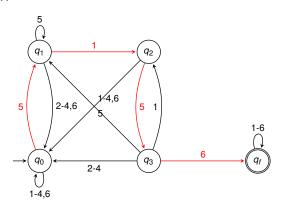
> Motivierende Beispiel

Formale Grundlagen Verhalten eines

DEAs Teilstring-

Teilstring-Erkennung

Transduktoren


Welt &

Teilstring-Erkennung

JNI

Das letzte Beispiel zeigte: Bei unserem Würfel wollen wir eigentlich alle Folgen akzeptieren, die 5156 als Teilstring enthalten, z.B. auch 55156, oder 5155156, oder 515156 oder ...5156...

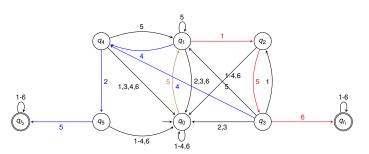
Endliche deterministische Automaten

Motivierende Beispiel

Formale Grundlagen Verhalten eines

DEAs
TeilstringErkennung

Transdukto-


Welt & Modell

Nord- und Ostkode integrieren

UNI FREIBURG

Wir haben ja auch noch 5425 als Teilstring zu erkennen! Das können wir in den Automaten integrieren:

Endliche deterministische Automaten

Motivierendes

Beispiel Formale

Verhalten eines

Teilstring-Erkennung

Transduktoren

Welt & Modell

2 Transduktoren

UNI

- Moore-Automat
- Umsetzung
- Python-Skript für Beispiel

Endliche deterministische Automaten

Transduktoren

Moore-Automat Umsetzung Python-Skript fü Beispiel

Welt & Modell

■ Eigentlich wollen wir ja aber eine Maschine haben, die "ewig" läuft und die jeweils nach einem akzeptierten Teilwort eine Ausgabe macht.

- Wir wollen keinen Akzeptor, sondern einen Transduktor einen Automaten, der auch Ausgaben macht und nie stoppt.
- Hier verzichtet man zumeist auf Endzustände.
- Mit solchen Transduktoren kann man gut das Verhalten eingebetteter Systeme beschreiben.

sche Automaten

Transduktoren

fassung & Ausblick

Moore-Automaten

Endliche sche

> Automaten Transdukto-

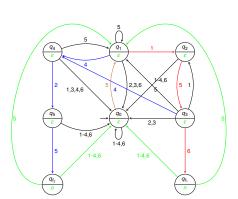
Moore-Automat

Zusammen-

fassung & Ausblick

Ein Moore-Automat (nach Edward F. Moore) ist ein endlicher Automat, der in jedem Zustand ein Zeichen ausgeben kann. Es ist ein 6-Tupel $A = \langle Q, \Sigma, \Lambda, \delta, \lambda, q_0 \rangle$, wobei

- Q ist die endliche Zustandsmenge,
- Σ ist das Eingabealphabet,
- Λ ist das Ausgabealphabet,
- $\delta: Q \times \Sigma \to Q$ ist die Übergangsfunktion,
- $\lambda: Q \to \Lambda$ ist die Ausgabefunktion.
- \blacksquare q_0 ist der Startzustand.


Kommt der Automat in einen Zustand q, dann gibt er das Zeichen $\lambda(q)$ aus. Oft werden diese Ausgabezeichen als Aktionen verstanden (oder sind Eingaben für andere Automaten).

Beispiel: Der Würfel-Moore-Automat

UNI FREIBURG

Sei $\Lambda = \{n, o, \varepsilon\}$, dann könnte unser Würfelautomat so ausschauen (die grünen Teile sind neu):

Endliche deterministische Automaten

Transduktoren

Moore-Automat

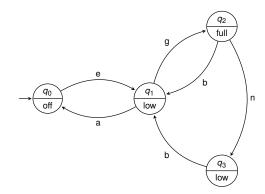
Umsetzung Python-Skript fü Beispiel

Welt &

Beispiel: Ein hypothetische Motorsteuerung

UNI FREIBURG

 $\Sigma = \{e, a, g, b, n\}$, wobei e für "ein", a für "aus", g für "Gas geben", b für "bremsen", n für "nicht drehende Räder" steht. $\Lambda = \{\text{off,low,full}\}.$


Endliche deterministische Automaten

Transduktoren

ren Moore-Automat

Umsetzung Python-Skript fi

Welt &

- Wie implementiert man denn solch einen abstrakten Automaten?
- Schauen wir doch einmal in den Würfel hinein:

- Batterien (4×AA-Akkus, also 4.5-6 Volt),
- Servomotor.
- pyboard (mit einem ARM-5 Prozessor, Beschleuningungsmesser, usw.), auf dem Micropython läuft

Endliche sche Automaten

Transdukto-

Moore-Automat

Umsetzuna

Welt &

Modell Zusammen-

fassung & Ausblick

Das Würfel-Programm

UNI FREIBU

- side_up(): Bestimmt mit Hilfe des Beschleunigsmessers, welche Seite oben liegt. Bei unklaren Werten wartet die Funktion, bis eine stabile Lage eingetreten ist.
- new_input(): Erzeugt ein neues Eingabesymbol für den Automaten (Zahl zwischen 1 und 6), wenn der Würfel 500 Millisekunden stabil lag.
- next_state(state, input): Das ist dieÜbergangsfunktion, die den nächsten Zustand berechnet.
- output_symbol(state): Berechnet das zum Zustand gehörige Ausgabesymbol.
- automaton(): Enthält die Endlosschleife zur Ausführung des Automaten.
- code_knock(code): Klopft entsprechend dem angeforderten Code.

Endliche deterministi sche Automaten

Transdukto-

Umsetzung

Beispiel

Welt & Modell

Die Erdbeschleunigung von 1g entspricht einem Messwert von rund 20.

Seitenerkenner

```
thres = 12
def side_up():
    while True:
        x = acc.x(); y = acc.y(); z = acc.z()
        if x > thres: return 5 #x up
        if x < -thres: return 2 #x down
        if y > thres: return 6 #y up
        if y < -thres: return 1 #y down
        if z > thres: return 3 #z up
        if z < -thres: return 4 #z down
        # no stable situation yet</pre>
```

Endliche determinist sche Automaten

Transduktoren

Umsetzung

Python-Skript für

Python-Skript fi Beispiel

Welt & Model

Symbolerzeugung

Erzeugt i.W. alle 0,5 Sekunden ein neues Eingabesymbol, also nicht nur, wenn die Seite gewechselt wird. D.h. Automat muss auch etwas anders aussehen!

Endliche deterministi sche Automaten

Transduktoren

Moore-Automat Umsetzung

Python-Skript für Beispiel

Welt & Modell

Die Übergangsfunktion

UN EREIB

Übergangsfunktion

```
def next state(state, input):
    if state == 0: # intial state
        if input == 5: return 1
        return 0
    elif state == 1: # '5' read
        if input == 5: return 1
        if input == 1: return 2
        if input == 4: return 4
        return 0
    elif state == 2: # '51' read
        if input == 1: return 2 # repetition!
        if input == 5: return 3
        return 0
    elif ...
```

Endliche deterministi sche Automaten

Transduktoren

Moore-Automat
Umsetzung
Python-Skript für

Beispiel
Welt &

Welt & Modell

Zusammenfassung & Ausblick

Beachte: Jeder Zustand hat eine Schleife für das Zeichen, das dafür notwendig war, in den Zustand zu kommen.

Der Automat & die Ausgabefunktion

Ludii BEndii

```
Der Automat & die Ausgabefunktion
def automaton():
    state = 0
    while True:
        if sw(): return # if switch is pressed, exit
        state = next state(state, new input())
        code knock(output symbol(state))
def output_symbol(state):
    if state == 10:
        return "north"
    elif state == 11:
        return "east"
    else:
        return None
```

Endliche determinist sche Automaten

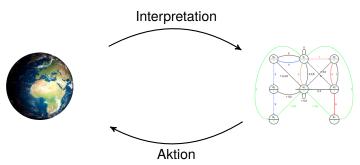
> Transduktoren

Umsetzung
Python-Skript für
Beispiel

Welt &

FREIBI

Endliche deterministische Automaten


Transduktoren

Welt & Modell

Die reale Welt & formale Modelle

Endliche deterministi sche Automaten

Transduktoren

Welt & Modell

Zusammen fassung & Ausblick

Bevor wir formale Modelle (wie Moore-Automaten) einsetzen können, müssen zuerst die Messwerte/Eingaben interpretiert und in Symbole umgesetzt werden. Die Interpretation und das Modell beeinflussen sich dabei gegenseitig (Beispiel: Würfelseitenerkennung und Automat)
Werden wir in der Info Laber nicht vertiefen.

FREIBUR

Endliche deterministische Automaten

Transduktoren

Welt & Modell

Zusammenfassung

Endliche determinis

sche

Automaten
Transdukto-

Welt & Modell

Zusammen-

Zusammer fassung & Ausblick

- Endliche Automaten sind ein einfaches Berechnungsmodell.
- Formale Sprachen sind eine Menge von Wörtern.
- Determinstische endliche Automaten (DEAs) sind Akzeptoren, sie k\u00f6nnen Sprachen akzeptieren.
- Transduktoren sind endliche Automaten (ohne Endzustand), mit denen Eingaben in Ausgaben überführt werden können.
- Der Moore-Automat macht in jedem Zustand eine Ausgabe.
- Endliche Automaten k\u00f6nnen das Verhalten eingebetteter Systeme gut beschreiben.
- Was wir völlig ignoriert haben: Energieeffizienz (das pyboard braucht 80mA im Wachmodus).

30. Oktober 2015 B. Nebel – Info I 30 / 30