Constraint Satisfaction Problems

B. Nebel, C. Becker-Asano, S. Wölfl Wintersemester 2014/15

University of Freiburg Department of Computer Science

Exercise Sheet 7 Due: 10.12.2014

Exercise 7.1 (3 + 3 + 3 points)

Consider the following network $N = \langle V, D, C \rangle$ with:

• $D_1 = \{2, 3\},$ • $D_5 = \{3, 4\},$

• $D_2 = \{0\},$ • $D_6 = \{0, 1\}.$

•
$$D_3 = \{3\},$$
 • $D_7 = \{1\},$

• $D_4 = \{1, 2\},\$

The constraints C are provided by the following graph:

In the following use lexicographic orderings, i.e., the variable ordering $v_1 \prec v_2 \prec \cdots \prec v_8$ and for value ordering $0 \prec 1 \prec \cdots \prec 4$. Do not use any look-ahead strategies. It is sufficient to provide the *jumps* and the identified *internal* and *leave dead ends* in the order they appear during search.

- (a) Apply backtracking search with Gaschnig's backjumping to N.
- (b) Apply backtracking search with graph-based backjumping to N. Provide the sets of relevant variable where used.
- (c) Apply backtracking search with conflict-directed backjumping to N. Provide the jump-back sets where used.

Exercise 7.2 (3 points)

Show that jumping back further than the culprit variable for Gaschnig's Backjumping is incorrect. To this end, let (a_1, \ldots, a_i) be a leaf dead-end, v_b its culprit variable, and construct an example where jumping back to (a_1, \ldots, a_i) , j < b skips solutions.