Constraint Satisfaction Problems

B. Nebel, C. Becker-Asano, S. Wölfl Wintersemester 2014/15 University of Freiburg Department of Computer Science

Exercise Sheet 2 Due: 05.11.2014

Exercise 2.1 (2+2 points)

Let $G = \langle V, A \rangle$ be the directed graph given by the following figure.

- (a) A strongly connected component of a directed graph is a maximal strongly connected subgraph. List the strongly connected components of G.
- (b) Let $G' = \langle V, E \rangle$ be the undirected simple graph obtained from G by setting $\{v, v'\} \in E$ if and only if $(v, v') \in A \lor (v', v) \in A$. List all cliques of G' of size ≥ 2 .

Exercise 2.2 (2+2 Punkte)

Consider the following crossword puzzle:

with fill-in words: ALB, BIER, BAER, BRAEU (usually, all words in the given list need to be filled; for the exercise, it is only required that all words filled-in are from the given list).

- (a) Formalize the puzzle as a *constraint network*.
- (b) Provide its *primal* and *dual constraint graphs*.

Exercise 2.3 (2+2 points)

A set of n children C has to be split up into k different groups. However, some of the children like each other, others do not.

Decision problem: Given a finite set $C = \{c_1, \ldots, c_n\}$ of children, a binary relation L on C such that $(c_i, c_j) \in L$ if and only if c_i and c_j $(i \neq j)$ like each other. Is it possible to distribute the children into k groups such that no group contains a pair of children that do not like each other.

- (a) How difficult is the problem in the case k = 2?
- (b) How difficult is the problem in the case k = 3?

If the problem can be solved in polynomial time, describe a polynomial-time algorithm for the decision problem. If it is NP-complete, provide an appropriate proof.