Constraint Satisfaction Problems

B. Nebel, C. Becker-Asano, S. Wolfl University of Freiburg
Wintersemester 2014/15 Department of Computer Science

Project: Part 4
Due: 6.2.2015

The Competition We will evaluate your solvers in a small competition. Working on this
project sheet is not mandatory; there are no points. But the authors of the top three ranked
solvers will get small prizes.

If you want to participate, please hand in your code by Thu, Feb 5, in your git repository
in a new branch competition. We will start with first tests on Fri, Feb 6. The last chance
to update your code is on Fri, Feb 6, 23:59. The results will be presented on Wed, Feb 11.

What You Should Prepare You already have implemented a selection of different al-
gorithms and heuristics. Of course, you may implement further algorithms (e.g. some
backjumping technique). Thus, you have to decide on a reasonable default selection of con-
straint solving methods. To this end, implement an ——auto command line switch that sets
the heuristics and algorithms as you want (and maybe tailored to the input instance); your
selection of preprocessing, maintaining arc consistency/backtracking algorithm, heuristics,
etc. We will invoke your solver with:

python3 solver.py --auto instance.xml

Further, we require you to print the found solution in case of satisfiable problem instances.
The output format for satisfiable problems must be:

SAT
+Solution: variable_name=value, variable_name=value,
+Info:

The last line should be a single info line (less than 80 chars) that provides information about
the methods used by your solver (if you want to log more information use the Python logging
module). For example, for V' = (var!, var2,var3) and solution (1,2,3) the output could
look as follows:

SAT
+Solution: varl=1, var2=2, var3=3
+Info: preproc=gac3, hvar=lexico, search=gaschnig

For unsatisfiable problems the output must have the form:

UNSAT
+Solution: None
+Info:

Further, make sure that nothing else is printed to the output.

Competition Rules The evaluation will be done on around 60 instances without giving
you access to these (blind evaluation). We will use a time-out of 5 minutes per solver
and instance. For each correctly solved instance, the solver will get points. Each solver
accumulates the points over the all instances. Solvers will be ranked according to the
number of points they have accumulated.

To calculate the number of points for a solver that successfully solves an instances we will
use a purse-based method:

e “solved purse”: there are 100 points distributed equally among all solvers that correctly
solve the instance.

e “speed purse”: there are 100 points for each problem which are distributed relative to
the speed (i.e., runtime) of each solver that correctly solves this instance:

1
F. = —
solver 1 + time(solver)
. Fsolver
points(solver) := 100 - =——————
ZsEsolvers FS

Note, the “solved purse” gives points for solving instances, and rewards success on hard
problems. The “speed purse” rewards fast solvers.

Example 1. If 4 out of 6 solvers correctly finish on instance 1 with running times 20.5,
30.4, 80.8,140.0 seconds:

e cach of them will be given % = 25 points for the solution.
o the “speed-purse” will give 47.6 points to the first, 32.6 to the second, 12.5 to the third,
and 7.3 to the forth.

For this instance we have the following points (and preliminary ranking):
1. | solver-1 | 72.6
2. | solver-2 | 57.6
3. | solver-3 | 37.5
4. | solver-4 | 32.3

