
Constraint Satisfaction Problems

B. Nebel, C. Becker-Asano, S. Wölfl
Wintersemester 2014/15

University of Freiburg
Department of Computer Science

Project: Part 3
Due: 9.1.2015
(9 + 11 points)

Task 1: Variable selection heuristics (3 + 3 + 3 points) In order to improve the
efficiency of your CSP implementation, implement more informed strategies for choosing the
next variable that is to be assigned some value. We consider static variable orderings only,
namely the max cardinality and the min width ordering. Since both are static orderings,
they should be computed before the backtracking algorithm is started.

Implement command line options that allow for choosing the variable ordering used during
backtracking search:

python3 solver.py --heuristic=none instance.xml

python3 solver.py --heuristic=minwidth instance.xml

python3 solver.py --heuristic=maxcard instance.xml

In the first case, a lexicographic ordering on the names of the variables should be used.

Evaluate and discuss the influence of the variable ordering on the backtracking search: con-
sider also the option to enforce generalized arc consistency before search. Use the instances
from project 2. Moreover, we will provide some further instances, which will also involve
some intensional constraints and the all-different constraint.

The results of your evaluation are expected in the file: project03 ordering.txt. The table
summarizing the results should have the following format:

-----------------------------------------------------------

instance01.xml SAT

none/none TIMEOUT

none/maxcard 90.54s

none/minwidth 70.22s

gac3/none TIMEOUT

gac3/maxcard 10.13s

gac3/minwidth 9.23s

instance02.xml SAT

...

-----------------------------------------------------------

Task 2: Lookahead strategies (4+4+3 points) The next step of our project is to
implement lookahead strategies. Notice that different to standard backtracking search, look-
ahead requires to keep track of the changes made at every step (specifically those made in
the propagation step).

Implement the forward-checking and the real-full look ahead algorithms. Both are used
without a preprocessing step. Evaluate and discuss the runtime of both look ahead schemes.
If you are interested in a more fine-grained analysis it could be of interest to compare the



number of states visited during search as well as the average time spent in each state for
performing the filtering of future domains.

Implement command line options that allow for selecting the look ahead scheme as follows:

python3 solver.py --lookahead=none instance.xml

python3 solver.py --lookahead=forwardchecking instance.xml

python3 solver.py --lookahead=realfull instance.xml

As in the previous project the command without any lookahead algorithm specified should
still work:

python3 solver.py instance.xml

should perform the standard backtracking search.

Evaluate and discuss the influence of the lookahead scheme used during search: consider
also that you can combine this with different variable orderings. Use the same instances as
in the previous task.

The results of your evaluation are expected in the file: project03 lookahead.txt. The table
should have the following format:

-----------------------------------------------------------

instance01.xml SAT

none/none TIMEOUT

none/maxcard 90.54s

none/minwidth 70.22s

fcla/none TIMEOUT

fcla/maxcard 11.23s

fcla/minwidth 9.23s

rfla/none TIMEOUT

rfla/maxcard 11.23s

rfla/minwidth 9.23s

instance02.xml SAT

...

-----------------------------------------------------------


