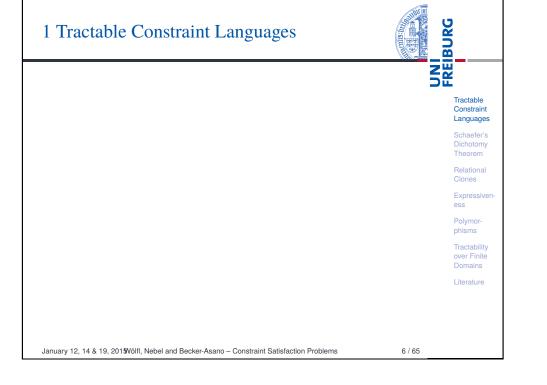


Restricting the general CSP	
The general CSP decision problem is the following: Given an instance of a constraint satisfaction problem, N , determine if there exists solution to N , i.e., determine whether	Tractable Constraint Languages
Sol(N)	Schaefer's Dichotomy Theorem
$:= \{ (d_1, \dots, d_n) \in D^n : a(v_i) = d_i \text{ for a solution } a \text{ of } N \}$	Relational Clones
(where n is the number of variables of V) is not empty.	Expressiven- ess
Restricting the general CSP:	Polymor- phisms
 structural restriction: consider just CSP instances with particular constraint scopes (e.g., where the network hypergraph has specific properties) 	Tractability over Finite Domains
 relational restriction: consider just CSP instances, where the constraint relations have a specific form or specific properties 	Literature
January 12, 14 & 19, 2015/06/11, Nebel and Becker-Asano – Constraint Satisfaction Problems 4 / 65	



Example: CHIP language	BURG
CHIP is a constraint language for arithmetic and other constraints. Basic constraints in CHIP are so-called:	Tractable
 domain constraints: unary constraints that restrict the domains of variables to a finite set of natural numbers 	Constraint Languages Schaefer's
arithmetic constraints: constraints of one of the forms	Dichotomy Theorem
ax = by + c	Relational Clones
$ax \le by + c$ $ax \ge by + c$	Expressiven- ess Polymor-
$(a,b,c \in \mathbb{N}, a \neq 0)$. If these equations are conceived of as relations, the resulting constraint language is tractable.	phisms Tractability over Finite
The language is still tractable if we allow for relations expressed by	Domains
$a_1x_1 + a_2x_2 + \cdots + a_nx_n \geq by + c$	Literature
$ax_1\cdots x_n \ge by + c$	
$(a_1x_1 \ge b_1) \lor \cdots \lor (a_nx_n \ge b_n) \lor (ay \ge b)$ January 12, 14 & 19. 2015Völfi, Nebel and Becker-Asano – Constraint Satisfaction Problems 8 / 65	

Definition

A constraint language is an arbitrary set of relations, Γ , defined over some fixed domain (denoted by $D(\Gamma)$).

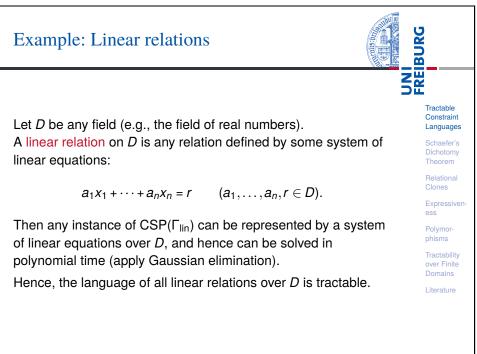
Definition

For a constraint language Γ , let CSP(Γ) be the class of CSP instances $N = \langle V, D, C \rangle$ such that for each $(s, R) \in C, R \in \Gamma$. CSP(Γ) is called the relational subclass associated with Γ .

Definition

A finite constraint language Γ is tractable if there exists a polynomial algorithm that solves all instances of CSP(Γ). An infinite constraint language Γ is tractable if each finite subset of the language is tractable.

Following we present some examples: January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems



9 / 65

UNI FREIBURG

Tractable

Constraint

Languages

Schaefer's

Dichotomy

Theorem

Clones

ess

phisms

Tractability

over Finite

Domains

Literature

Example: Relations on finite orderings

Let *D* be a finite ordered set. Consider the binary disequality relation

 $\neq_D = \left\{ (d_1, d_2) \in D^2 : d_1 \neq d_2 \right\}$

UNI FREIBURG

Tractable Constraint

Languages

Schaefer's Dichotomy Theorem

Relational

Expressiver ess

Clones

Polymor phisms Tractability over Finite

Domains

Literature

The class of CSP instances $\text{CSP}(\{\neq_D\})$ corresponds to the graph colorability problem with |D| colors. $\text{CSP}(\{\neq_D\})$ is tractable if $|D| \leq 2$ or $|D| = \infty$, and intractable, otherwise.

The ternary betweenness relation over *D* is defined by:

 $B_D = \{(a, b, c) \in D^3 : a < b < c \lor c < b < a\}$

 $CSP(\{B_D\})$ is tractable if $|D| \le 4$, and intractable if $|D| \ge 5$. January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems 10 / 65

Example: Boolean constraints	BURG
Let $D = \{0, 1\}$. The class of CSP instances $CSP(\{N_D\})$, where	Tractable Constraint
$N_D = D^3 \setminus \{(0,0,0),(1,1,1)\}$	Languages Schaefer's Dichotomy
is the not-all-equal relation over D , is intractable. CSP($\{N_D\}$) corresponds to the not-all-equal satisfiability problem (NAE-3SAT), which is known to be NP-hard.	Theorem Relational Clones Expressiven- ess
The class of CSP instances $CSP(\{T_D\})$, where	Polymor- phisms
$T_D = \{(0,0,1), (0,1,0), (1,0,0)\},\$	Tractability over Finite Domains
is intractable. CSP($\{T_D\}$) corresponds to the one-in-three satisfiability pro (1-in-3 SAT).	Literature
January 12, 14 & 19, 2015Völfl, Nebel and Becker-Asano - Constraint Satisfaction Problems	12 / 65

Example: Connected row-convex relations	
Let $D = \{d_1, \ldots, d_n\}$ be a finite (totally) ordered set. For a binary relation R over D , the matrix representation of R is an $n \times n$ 0,1-matrix M_R , where $M_R[d,d'] = 1$ iff $(d,d') \in R$. The pruned matrix representation of R results from the matrix representation of R , when we remove all rows and columns in which	Tractable Constraint Languages Schaefer's Dichotomy
only 0's occur. <i>R</i> is connected row-convex, if in the pruned matrix representation of <i>I</i> the pattern of 1's is connected along each column, along each row, and forms a connected 2-dimensional region.	Theorem
For example,	Polymor- phisms
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Tractability over Finite Domains
$\left(\begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right) \qquad \left(\begin{array}{cccccccc} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$	Literature
The constraint language on any class of connected row-convex January 12, 14 & 19, 2019Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 11 /	65

Example: 0/1/all-relations	BURG
Let <i>D</i> be an arbitrary finite set. A relation <i>R</i> over <i>D</i> is called 0/1/all-relation if one of the following conditions holds:	Tractable Constraint Languages
 <i>R</i> is unary; <i>R</i> = D₁ × D₂ for subsets D₁, D₂ of D; 	Schaefer's Dichotomy Theorem
■ $R = \{(d, \pi(d)) : d \in D_1\}$, for some subset $D_1 \subseteq D$ and some permutation π of D ;	Relational Clones Expressiven-
■ $R = \{(a,b) \in D_1 \times D_2 : a = d_1 \lor b = d_2\}$, for some subsets D_1, D_2 of D and some elements $d_1 \in D_1, d_2 \in D_2$.	ess Polymor- phisms
The language defined by all 0/1/all-relations is tractable.	Tractability over Finite Domains
It is even maximal tractable: if we add any binary relation over D that is not a $0/1$ /all-relation, then the resulting constraint language becomes intractable.	Literature

13 / 65

2

max-closed relations

Tractable

Constraint

Languages

Schaefer's

Dichotomy

Theorem

Relational

Clones

Polymor

Tractability

over Finite

Domains

Literature

14 / 65

phisms

ess

Let (D, <) be a linear order. Define max : $D \times D \rightarrow D$ in the usual way, i.e., max(a,b) = a if a > b, and max(a,b) = b, otherwise. We extend max to a function that can be applied to tuples, i.e., we define max : $D^k \times D^k \rightarrow D^k$ by

 $\max((a_1,\ldots,a_k),(b_1,\ldots,b_k))$

$$:= (\max(a_1, b_1), \dots, \max(a_k, b_k)).$$

Definition

An *n*-ary relation *R* over *D* is max-closed if for all (a_1, \ldots, a_n) , $(b_1, \ldots, b_n) \in R$,

 $\max((a_1,\ldots,a_n),(b_1,\ldots,b_n))\in R.$

January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems

Example: max-closed relations	BURG
	L L L L L L L L L L L L L L L L L L L
Hence any set of equations can be solved by establishing gen. arc consistency.	Tractable Constraint Languages
For example, consider a CSP instance with domain $\{1,, 5\}$, variables $\{v, w, x, y, z\}$, and equations	Schaefer's Dichotomy Theorem
$w \neq 3, z \neq 5, 3v \leq z, y \geq z+2,$	Relational Clones
$3x+y+z\geq 5w+1, \ wz\geq 2y.$	Expressiven-
Enforcing gen. arc consistency results in:	Polymor- phisms
$D(v) = \{1\}, D(w) = \{4\}, D(x) = \{4,5\},$ $D(y) = \{5\}, D(z) = \{3\}.$	Tractability over Finite Domains
	Literature
Hence $v \mapsto 1, w \mapsto 4, x \mapsto 5, y \mapsto 5, z \mapsto 3$	
is a solution of the constraint network.	
January 12, 14 & 19, 2015Völfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 16 / 65	

max-closed relations and tractability

Tractable

Constraint

Languages

Schaefer's

Dichotomy

Theorem

Clones Expressiven

ess Polymor-

phisms

Tractability

over Finite

Domains

Literature

15 / 65

Lemma

Let Γ be a constraint language with max-closed relations only. Then $CSP(\Gamma)$ is tractable.

Proof:

Enforce generalized arc consistency. If any domain of the resulting network is empty, the network is inconsistent. Otherwise, set each variable to its maximal value,

January 12, 14 & 19, 2015/Völfl, Nebel and Becker-Asano - Constraint Satisfaction Problems

UNI FREIBURG 2 Schaefer's Dichotomy Theorem Tractable Languages Schaefer's Dichotomy Theorem Relational Clones ess phisms Tractability over Finite Domains Literature January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems 18 / 65

Boolean constraint languages

Tractable

Languages

Schaefer's

Dichotomy

Theorem

ess

Polymor

over Finite

Domains

Literature

19/65

phisms

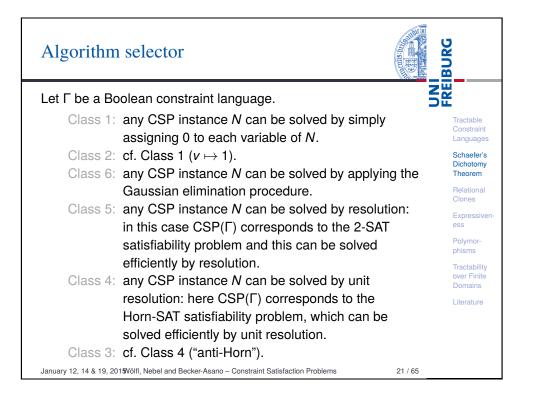
The key result in the literature on tractable constraint languages is Schaefer's Dichotomy Theorem (1978).

Definition

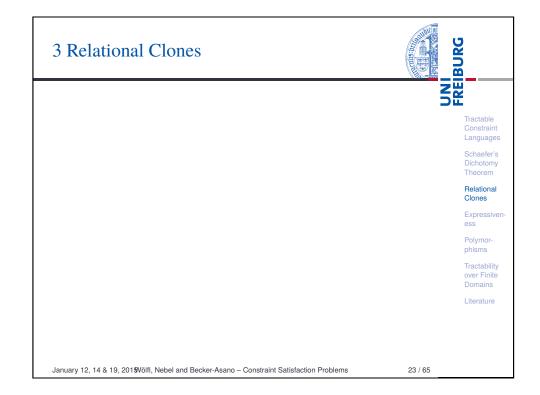
A Boolean constraint language is a constraint language over the two-element domain $D = \{0, 1\}$.

Schaefer's theorem states that any Boolean constraint language is either tractable or NP-complete. Moreover, it provides a classification of all tractable constraint languages.

January 12, 14 & 19, 2015Völfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

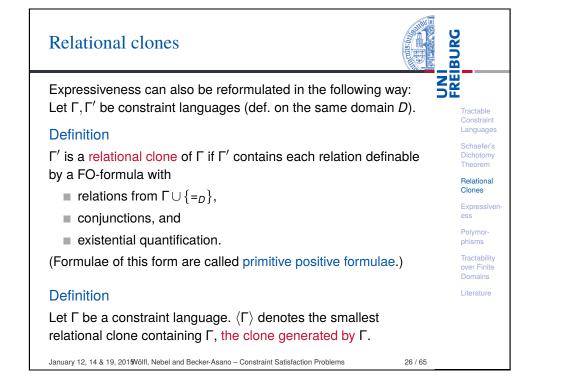


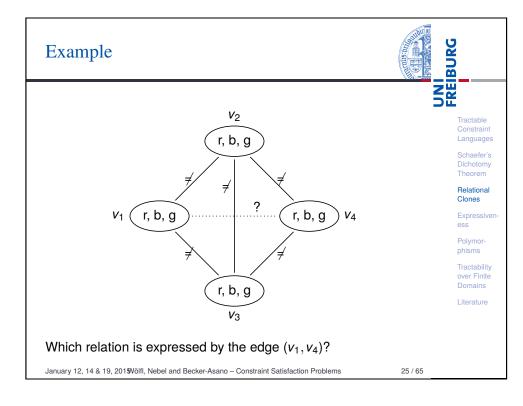
UNI FREIBURG Schaefer's theorem Theorem (Schaefer 1978) Tractable Let Γ be a Boolean constraint language. Then Γ is tractable if at Languages least one of the following conditions is satisfied: Schaefer's **Each** relation in Γ contains the tuple $(0, \ldots, 0)$. Dichotomy Theorem **2** Each relation in Γ contains the tuple $(1, \ldots, 1)$. Clones **I** Each relation in Γ is definable by a formula in CNF s. t. each conjunct has at most one negative literal. ess Each relation in Γ is definable by a formula in CNF s. t. each conjunct has at most one positive literal. Tractability over Finite **5** Each relation in Γ is definable by a formula in CNF s. t. each Literature conjunct has at most two literals. **Each** relation in Γ is the set of solutions of a system of linear equations over the finite field with 2 elements. January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems 20 / 65



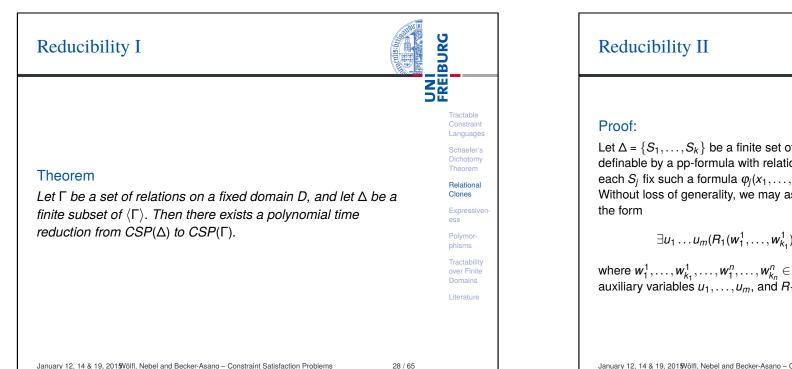
Gadgets

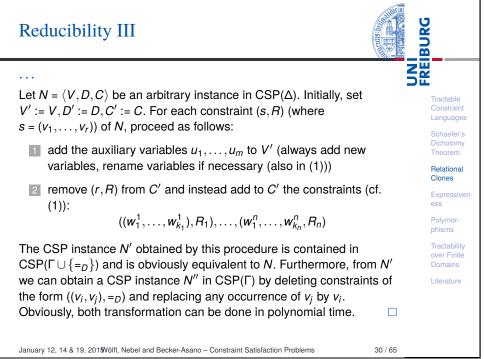
BURG UNI FREI N Tractable Languages Definition Let Γ be constraint language and *R* be a relation on $D(\Gamma)$. *R* is expressible in Γ if there exists a CSP instance $N \in \text{CSP}(\Gamma)$ Relational and a sequence of variables x_1, \ldots, x_r in N such that Clones ess $R = \pi_{x_1, \dots, x_r}(\mathrm{Sol}(N)).$ Polymor phisms N is referred to as a gadget for expressing R in $CSP(\Gamma)$, the over Finite sequence x_1, \ldots, x_r as construction site for *R*. Domains Literature January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems 24 / 65





UNI FREIBURG Example Consider a Boolean constraint language with the following relations: Tractable $R_1 = \{(0,1), (1,0), (1,1)\} \qquad R_2 = \{(0,0), (0,1), (1,0)\}.$ Language Schaefer's The relational clone generated by the set of these two relations Dichotomy Theorem contains all 16 binary Boolean relations. For example: Relational Clones $R_3 := \{(0,1), (1,0)\}$ $R_1(v_1, v_2) \wedge R_2(v_1, v_2)$ ess $R_4 := \{(0,0), (1,0), (1,1)\} \qquad \exists y (R_1(v_1,y) \land R_2(y,v_2))$ Polymor- $R_5 := \{(0,0), (1,1)\}$ phisms $V_1 = V_2$ Tractability $R_6 := \{(0,0)\}$ $R_2(v_1, v_2) \wedge R_5(v_1, v_2)$ over Finite Domains $R_7 := \{(1,1)\}$ $R_1(v_1, v_2) \wedge R_5(v_1, v_2)$ Literature $R_8 := \{(0,1)\}$ $\exists y (R_6(v_1, y) \land R_1(y, v_2))$





Tractable

Language

Schaefer's

Dichotomy

Theorem

Relational

Tractability

over Finite

Domains

Clones

ess

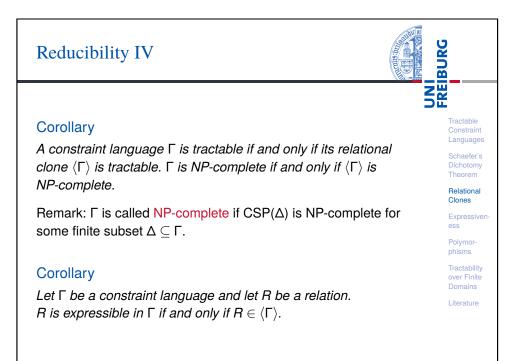
Let $\Delta = \{S_1, \dots, S_k\}$ be a finite set of relations, where each S_i is definable by a pp-formula with relations from Γ and the relation $=_D$. For each S_i fix such a formula $\varphi_i(x_1, \ldots, x_{r_i})$, where r_i is the arity of S_i . Without loss of generality, we may assume that each $\varphi_i(x_1, \ldots, x_{r_i})$ has

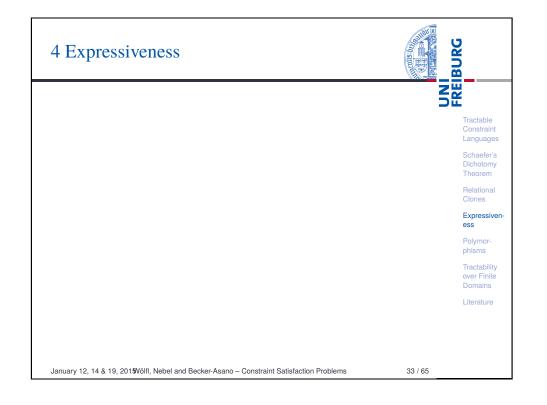
$$\exists u_1 \dots u_m(R_1(w_1^1, \dots, w_{k_1}^1) \wedge \dots \wedge R_n(w_1^n, \dots, w_{k_n}^n))$$
(1)

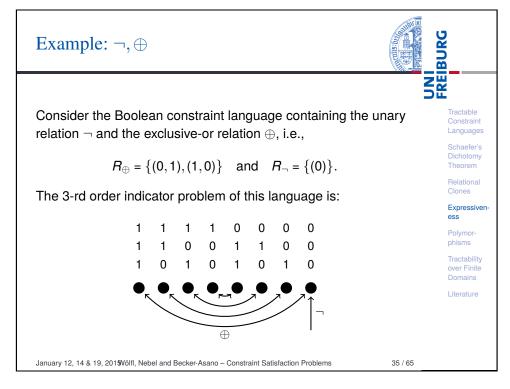
where $w_1^1, \ldots, w_{k_1}^1, \ldots, w_1^n, \ldots, w_{k_n}^n \in \{x_1, \ldots, x_{r_j}, u_1, \ldots, u_m\}$ for some auxiliary variables u_1, \ldots, u_m , and $R_1, \ldots, R_n \in \Gamma \cup \{=_D\}$

January 12, 14 & 19, 2015/Völfl, Nebel and Becker-Asano - Constraint Satisfaction Problems

29 / 65

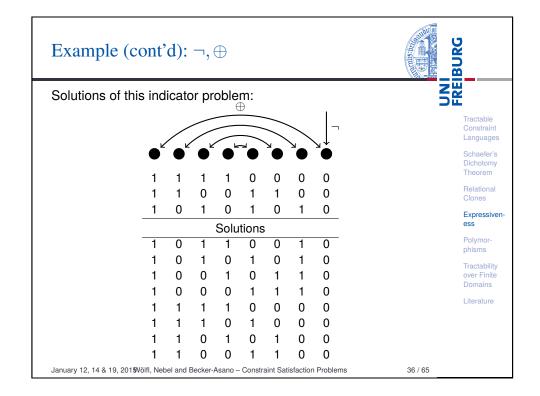






The indicator problem	BURG
Let $k \ge 1$ be a fixed natural number. Let $s = (x_1,, x_m)$ be a list of k -tuples in D^k . Let R be an n -ary relation on D .	Tractable Constraint Languages
We say, that <i>s</i> matches <i>R</i> if $n = m$ and if for each $1 \le i \le k$, the <i>n</i> -tuple $(x_1[i], \ldots, x_n[i])$ is in <i>R</i> .	Schaefer's Dichotomy Theorem
Let now Γ be a fixed finite constraint language over a finite domain. Set $I_k(\Gamma) = \langle V, D, C \rangle$, where	Relational Clones Expressiven- ess
$V := D^k$	Polymor-
${m C} \coloneqq \{({m s},{m R}): {m R} \in {m \Gamma}, {m s} ext{ matches } {m R}\}$	phisms Tractability
Note: $I_k(\Gamma) \in \text{CSP}(\Gamma)$ and contains constraints from Γ on every	over Finite Domains
possible scope which matches some relation in Γ.	Literature
Definition	
$I_k(\Gamma)$ is said to be the indicator problem of order k for Γ .	
January 12, 14 & 19, 2015Wolfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 34 / 65	

_



Expressiveness and the indicator problem

UNI FREIBURG

Tractable Constraint

Languages

Schaefer's Dichotomy

Theorem

Relational Clones

Expressiveness

Polymorphisms

Tractability over Finite Domains

Literature

37 / 65

Theorem (Jeavons (1998))

Let Γ be a finite constraint language over some finite domain *D* and let $R = \{t_1, \ldots, t_k\}$ be any *n*-ary relation on *D*. Equivalent are:

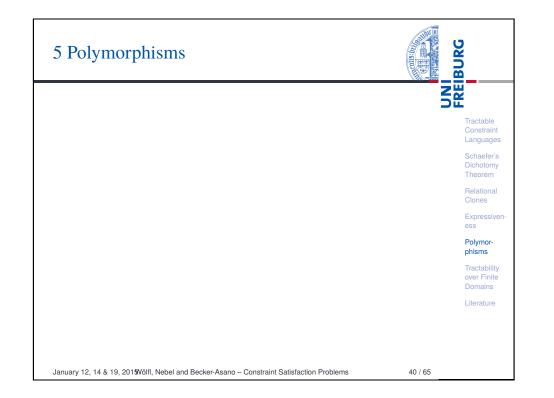
- (a) *R* is expressible in Γ (i.e., $R \in \langle \Gamma \rangle$).
- (b) $I_k(\Gamma)$ is a gadget for expressing R with construction site (x_1, \ldots, x_n) , where for each $1 \le i \le n$,

 $x_i := (t_1[i], \ldots, t_k[i]).$

Proof:

The direction from (b) to (a) is trivial, since $I_k(\Gamma)$ is contained in CSP(Γ). The other direction will be proved later.

January 12, 14 & 19, 2015Völfl, Nebel and Becker-Asano – Constraint Satisfaction Problems



Exa	ımj	pl	le:	乛,	\oplus					20 20
Prob {⊐,∉		: :	s th	e im	plic	atio	n e>	pre	ssible in the Boolean language	
Cons	side						•		m (since R_{\Rightarrow} has three elements variables $v = (1, 0, 0)$ and $w = (1, 0, 1)$:	Tractable Constraint Language
(1,1)			1	1	0	0	0	0		Schaefer's Dichotomy Theorem
1	1 C		0 1	0 0	1 1	1 0	0 1	0 0		Relational Clones
_			5	Solu		-			From this we obtain that	Expressive ess
1			1	1 0	0 1	0 0	1 1	0 0	$\pi_{(v,w)}(Sol(I_3(\Gamma))) = D \times D \neq$	Polymor- phisms
1			-	1		1 1			$R_{\Rightarrow}.$ Thus, the implication is not	Tractability over Finite
1		-	1	0 1	0	-	0	-	expressible.	Domains Literature
1				0			0	-		
1			0 0	1 0	0 1	1 1	0 0	0 0		
January	12, 14	1 4 &	19, 20	01 5 Völi	il, Neb	el and	Beck	ər-Asaı	no – Constraint Satisfaction Problems 38 / 65	

Polymorphisms	BURG
	FRE
Let <i>f</i> be a <i>k</i> -ary operation, i.e., a function $f : D^k \to D$. For any collection of <i>n</i> -tuples, $t_1, \ldots, t_k \in D^n$, let $f(t_1, \ldots, t_k)$ be	Tractable Constraint Languages
defined as the <i>n</i> -tuple:	Schaefer's Dichotomy Theorem
$(f(t_1[1],,t_k[1]),,f(t_1[n],,t_k[n])).$	Relational Clones
	Expressiven- ess
Definition	Polymor- phisms
Let $f : D^k \to D$ be a k-ary operation, and R be an n-ary relation. f is a polymorphism of R (or: R is invariant under f) if for all	Tractability over Finite Domains
$t_1,\ldots,t_k\in R,f(t_1,\ldots,t_k)\in R.$	Literature

January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems

Polymorphisms and invariant relations

Let Γ be a set of relations on a fixed domain *D*, and let *F* be a set of operations on D. Then define:

- $Pol(\Gamma)$: the set of operations on *D* that preserve each relation in Γ
- Inv(F): the set of relations on D that are invariant under each operation of F

Lemma

Lemma

Proof:

polymorphism of each $R \in \langle \Gamma \rangle$.

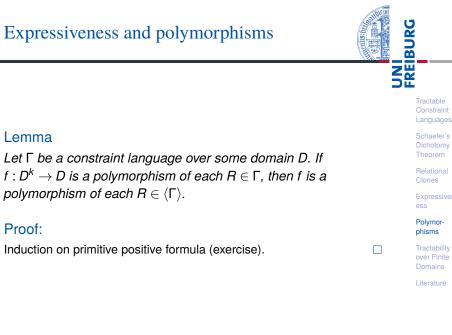
Pol and Inv define anti-monotone functions, and are related by the following Galois correspondence:

$$\Gamma \subseteq \operatorname{Inv}(F) \iff F \subseteq \operatorname{Pol}(\Gamma)$$

In particular, it holds:

January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems ` × // — · · · //

Expressiveness and polymorphisms



42 / 65

BURG

Languages

Dichotomy

Theorem

Clones

ess

Polymor

over Finite

Literature

phisms

UNI FREIBURG Indicator problem and polymorphisms Tractable Languages Lemma Dichotomy Theorem Let Γ be a constraint language. The solutions of the k-th indicator problem $I_k(\Gamma)$ are precisely the k-ary polymorphisms of Γ . Clones ess Proof: Polymorphisms Apply the definitions ... Tractabilit over Finite 43 / 65 January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems

Expressiveness and the indicator problem UNI FREIBURG (Part 2) Tractable The following lemma completes the proof of Jeavons' theorem: Language Schaefer's Lemma Dichotomy Theorem Let $R = \{t_1, ..., t_k\}$ be an *n*-ary relation (over some finite domain Relational D). For $1 \le i \le n$, set $x_i := (t_1[i], \ldots, t_k[i])$. Clones If *R* is expressible in Γ , then $R = \pi_{x_1,...,x_n}(Sol(I_k(\Gamma)))$. ess Polymorphisms Proof: Tractability Blackboard. over Finite Literature January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems 45 / 65

January 12, 14 & 19, 2015/Völfl, Nebel and Becker-Asano - Constraint Satisfaction Problems

Expressiveness and Invariants

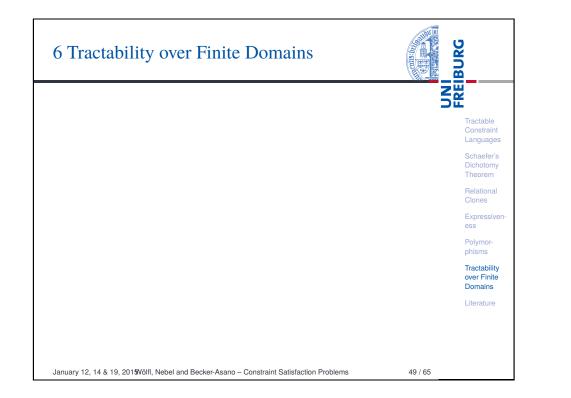
Theorem

For any constraint language Γ over some finite domain D,

$\langle \Gamma \rangle = Inv(Pol(\Gamma))$

Proof:

 $\subseteq \text{ is clear. For the converse let } R \text{ be an } n\text{-ary relation that is invariant} \\ \text{for each polymorphism of } \Gamma \text{. We have to show that } R \in \langle \Gamma \rangle \text{. Let} \\ R = \{t_1, \ldots, t_k\} \text{ and consider the } k\text{-th indicator problem of } \Gamma \text{. First} \\ \text{define } x_i := (t_1[i], \ldots, t_k[i]) \ (1 \leq i \leq n), \text{ then consider} \\ R_t = \pi_{x_1, \ldots, x_n}(\text{Sol}(I_k(\Gamma))). \text{ Obviously, } R \text{ is expressible if } R = R_t. \\ R_t \subseteq R \text{ follows from the facts that every solution of } I_k(\Gamma) \text{ is a } k\text{-ary} \\ \text{polymorphism and that each polymorphism of } \Gamma \text{ preserves } R. \\ \text{For } R \subseteq R_t, \text{ consider } t_j \text{ in } R. \text{ Now the } j\text{-th projection function} \\ p_j : D^k \to D \text{ is a polymorphism, and hence a solution of } I_k(\Gamma). \text{ It follows} \\ t_j = p_j(x_1, \ldots, x_n) \in R_t. \\ \end{bmatrix}$



Expressiveness, Polymorphisms, and Complexity

Corollary

UNI FREIBURG

Tractable

Languages

Schaefer's

Dichotomy

Theorem

ess

Polymor

over Finite

Literature

phisms

A relation R on a finite domain is expressible in a constraint language Γ if and only if $Pol(\Gamma) \subseteq Pol(\{R\})$.

UNI FREIBURG

Tractable

Languages

Schaefer's

Dichotomy

Theorem

Clones

ess

Polymor

phisms

Tractabilit

over Finite

Domains

Literature

47 / 65

Corollary

Let Γ and Δ be constraint languages on a finite domain. If Δ is finite and $Pol(\Gamma) \subseteq Pol(\Delta)$, then $CSP(\Delta)$ is polynomial-time reducible to $CSP(\Gamma)$.

January 12, 14 & 19, 2015/Völfl, Nebel and Becker-Asano - Constraint Satisfaction Problems

UNI FREIBURG Operations Following, we study *k*-ary operations $f: D^k \to D$. Tractable Definition Language f is idempotent if for each $x \in D$, f(x, ..., x) = x. Schaefer's Dichotomy Given k = 3, f is a majority operation if for all $x, y \in D$, Theorem Clones f(x, x, y) = f(x, y, x) = f(y, x, x) = x.ess Given k = 3, f is a Mal'tsev operation if for all $x, y \in D$, phisms Tractability f(y, y, x) = f(x, y, y) = x.over Finite Domains • *f* is conservative if for all $x_1, \ldots, x_k \in D$, $f(x_1,\ldots,x_k)\in\{x_1,\ldots,x_k\}.$ January 12, 14 & 19, 2015/Völfl, Nebel and Becker-Asano - Constraint Satisfaction Problems 50 / 65

Operations (cont'd)

Definition

- Given k = 2, f is a semi-lattice operation if it is
 - associative (i.e., f(x, f(y, z)) = f(f(x, y), z)),
 - commutative (i.e., f(x,y) = f(y,x)), and
 - idempotent.
- Given *k* = 3 and an Abelian group structure on *D*, *f* is affine if for all *x*,*y*,*z* ∈ *D*,

BURG

UNI REI

Tractable

Languages

Schaefer's Dichotomy

Theorem

Clones

ess Polymorphisms

Tractability

over Finite

Domains

Literature

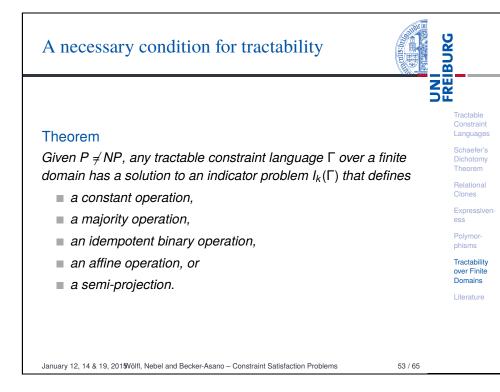
51 / 65

f(x, y, z) = x - y + z.

Given $k \ge 3$, f is a near-unanimity operation if for all $x, y \in D$,

$$f(y,x,\ldots,x)=f(x,y,x\ldots,x)=\cdots=f(x,\ldots,x,y)=x$$

January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems



Operations (cont'd)	BURG
	Tractable
Definition	Constraint
■ <i>f</i> is essentially unary if there exists an $1 \le i \le k$ and a unary non-constant operation <i>g</i> on <i>D</i> such that for all $x_1, \ldots, x_k \in D$,	Schaefer's Dichotomy Theorem
$f(x_1,\ldots,x_k \in D),$ $f(x_1,\ldots,x_k) = g(x_i).$	Relational Clones
If g is the identity operation, then f is called a projection.	Expressive ess
Given $k \ge 3$, f is a semi-projection if f is not a projection	Polymor- phisms
and there exists an $1 \le i \le k$, such that for all $x_1, \ldots, x_k \in L$ with $ \{x_1, \ldots, x_k\} < k$,	Tractability over Finite Domains
$f(x_1,\ldots,x_k)=x_i.$	Literature
· (· · · · · · · · · · · · · · · · · ·	
January 12, 14 & 19, 2015/Völfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 52 / 6	i5

BURG **Boolean CSPs FREI** The complexity of any language over a domain of size 2 can be determined by considering the solutions of its 3rd order indicator Tractable problem. The problem is intractable unless this indicator problem Languages has one of the following six solutions: Dichotomy Theorem Variables 1 1 1 1 0 0 0 0 Clones 1 1 0 0 1 1 0 0 ess 0 1 0 1 0 1 0 1 Solutions Schaefer class Name phisms 0 0 0 0 0 0 0 0 1 Constant 0 Tractability over Finite 1 1 1 1 1 1 1 2 Constant 1 Domains Anti-Horn 1 1 1 1 1 0 3 Horn-SAT 0 0 0 0 4 0 0 0 5 2-SAT 1 1 0 1 0 0 0 6 0 0 1 0 1 1 0 Linear 1

54 / 65

January 12, 14 & 19, 2015/Völfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

Example: -	',⊕	;							BUR
									ZZ
			lacksquare					ullet	
							_	_	Constraint
	1	1	1	1	0	0	0	0	Languages
	1	1	0	0	1	1	0	0	Schaefer's Dichotomy
	1	0	1	0	1	0	1	0	Theorem
				Solu	tions	3			Relational Clones
	1	0	1	1	0	0	1	0	Expressiven
	1	0	1	0	1	0	1	0	ess
	1	0	0	1	0	1	1	0	Polymor- phisms
	1	0	0	0	1	1	1	0	Tractability
	1	1	1	1	0	0	0	0	over Finite Domains
					-				
	1	1	1	0	1	0	0	0	Literature
	1	1	0	1	0	1	0	0	
	1	1	0	0	1	1	0	0	

UNI FREIBURG Tractable Languages If Γ is the Boolean constraint language containing relations expressible by conjunctions of Horn clauses, then Theorem Dichotomy Theorem $\wedge: \{0,1\}^2 \rightarrow \{0,1\}$ Clones is a semi-lattice operation that is a polymorphism of Γ . ess Polymor phisms Tractability over Finite Domains If D is ordered, then max is a semi-lattice operation, which is a Literature polymorphism of each set of max-closed relations. 57 / 65

Sufficient conditions: Semi-lattice operations

Tractable

Languages

Schaefer's Dichotomy Theorem Clones

ess

phisms Tractability

over Finite Domains

Literature

56 / 65

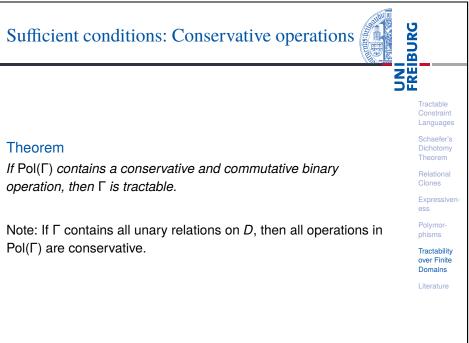
In what follows let Γ always be a constraint language over a finite domain D. We present some sufficient criteria for (in-) tractability.

Theorem

If $Pol(\Gamma)$ contains a semi-lattice operation, then

- Γ is tractable, and
- each instance of $CSP(\Gamma)$ can be solved by enforcing generalized arc consistency.

January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems



Examples

Example 1:

Example 2:

Sufficient conditions: Near-unanimity operations

Languages

Clones

ess

Polymor phisms

Theorem

If $Pol(\Gamma)$ contains a k-ary near-unanimity operation, then

- Γ is tractable.
- Each instance of CSP(Γ) can be solved by enforcing strong k-consistency.

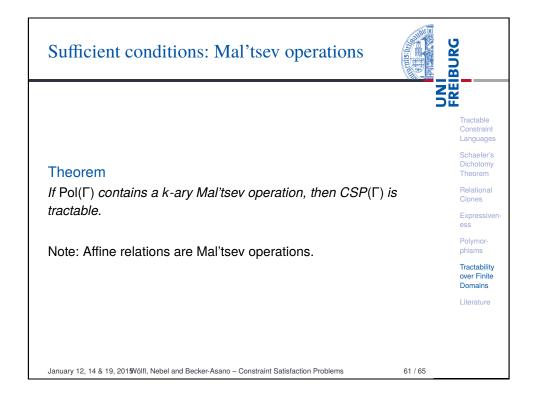
Proof:

Blackboard.

Tractability over Finite Domains Literature

59 / 65

January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems



Examples

60 / 65

Tractable

Languages

Schaefer's Dichotomy

Theorem

Clones

ess

phisms

Tractability

over Finite

Domains

Example 3:

Let Γ be the Boolean constraint language that consists of relations definable by a PL-formula in CNF s.t. each conjunct has at most two literals. Then

$$d(x,y,z) := (x \land y) \lor (y \land z) \lor (x \land z)$$

is a near-unanimity operation on $\{0,1\}$ and a polym. of $\Gamma.$

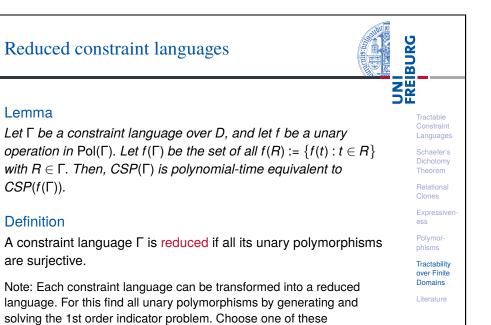
Example 4:

The 0/1/all relations are invariant under the ternary operation

$$d(x,y,z) := \begin{cases} x & \text{if } y \neq z \\ y & \text{else} \end{cases}$$

which is a near-unanimity operation.

January 12, 14 & 19, 2015/Völfl, Nebel and Becker-Asano – Constraint Satisfaction Problems



January 12, 14 & 19, 2015Völfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

polymorphisms *f* with a minimal number of values in its range.

A sufficient condition for intractability

Theorem

Let Γ be a constraint language over a finite domain. If Pol(Γ) contains only essentially unary operations, then $CSP(\Gamma)$ is NP-complete.

UNI FREIBURG

Tractable

Constraint

Languages

Schaefer's

Dichotomy

Theorem

Relational

Expressiven

Clones

ess Polymor-

phisms

Tractability

over Finite

Domains

Literature

63 / 65

Proof idea:

We can assume that Γ is reduced. One can show that

- \neq_D is in Inv(Pol(Γ));
- if |D| = 2, $Inv(Pol(\Gamma))$ contains the not-all-equal relation:

$$D^3 \setminus \{(x,x,x) : x \in D\}$$

which ensures that $CSP(\Gamma)$ intractable.

January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems

Literature	BURG
 David Cohen and Peter Jeavons. Tractable constraint languages. In: R. Dechter <i>Constraint Processing</i>, Chapter 11, Morgan 	Tractable Constraint Languages Schaefer's
 Kaufmann, 2003 Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. The complexity of maximal constraint languages. In: <i>Proceedings of STOC'01</i>, 2001 	Dichotomy Theorem Relational Clones Expressiven-
Andrei Bulatov, P. Jeavons, and Andrei Krokhin. Classifying the complexity of constraint using finite algebras. <i>SIAM J. Comput.</i> 34(3), 2005	ess Polymor- phisms Tractability over Finite
 David Cohen and Peter Jeavons. The complexity of constraint languages. In: F. Rossi, P. v. Beek, and T. Walsh, Handbook of Constraint Programming, Elsevier, 2006 	Domains
January 12, 14 & 19, 2015Völfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 65 / 65	

Towards a classification	FREIBURG
It can be shown that for any reduced constraint language Γ on a finite domain <i>D</i> , one of the following conditions holds:	Tractable Constraint Languages Schaefer's Dichotomy
 Pol(Γ) contains a constant operation; Pol(Γ) contains a ternary near-unanimity operation; Pol(Γ) contains a Mal'tsev operation; 	Theorem Relational Clones Expressiven-
 Pol(Γ) contains a marisev operation; Pol(Γ) contains a semi-projection; 	ess Polymor- phisms Tractability
■ Pol(Γ) contains essentially unary operations only.	over Finite Domains Literature
January 12, 14 & 19, 2015Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 64 / 65	