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Global constraints

What are global constraints?
Type of similar constraint relations . . .
. . . differing in the number of variables
Semantically redundant: same constraint can be expressed
by a conjunction of simpler constraints
Similar structure: can be exploited by constraint solvers

Examples:

sum constraint, knapsack constraint, element constraint,
all-different constraint, cardinality constraints
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All-different constraint

Definition
Let v1, . . . ,vn be variables each with a domain Di (1≤ i ≤ n).

alldifferent(v1, . . . ,vn) :=
{(d1, . . . ,dn) ∈ D1×·· ·×Dn : di 6= dj for i 6= j}

The all-different constraint is a simple, but widely used global
constraint in constraint programming.
It allows for compact modeling of CSP problems.
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Example: n-Queens Problem

0l0Z
Z0Zq
qZ0Z
Z0l0

Abbildung: 4-queens problem

Problem representation:
Variables vi for each column
1, . . . ,n;
vi can take a “row value”
1, . . . ,n.

No-attack constraints:

vi 6= vj for 1≤ i < j ≤ n
vi− vj 6= i− j for 1≤ i < j ≤ n
vj− vi 6= i− j for 1≤ i < j ≤ n

alldifferent(v1, . . . ,vn)
alldifferent(v1−1, . . . ,vn−n)
alldifferent(v1 +1, . . . ,vn + n)
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Sum constraint

Let v1, . . . ,vn,z be variables with subsets of Q as domain.
For each vi , let ci ∈Q be some fixed scalar, c = (c1, . . . ,cn).

Definition
The sum constraint is defined as:

sum(v1, . . . ,vn,z;c) :=
{(d1, . . . ,dn,d) ∈ ( ∏

1≤i≤n
Di)×Dz : d = ∑

1≤i≤n
cidi}.
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Global cardinality constraint

v1, . . . ,vn: “assignment variables” with Dvi ⊆ {d∗1 , . . . ,d∗m}.
c1, . . . ,cm: “count variables” with sets of integers as domains.

Definition
The global cardinality constraint is defined as:

gcc(v1, . . . ,vn,c1, . . . ,cm) :=
{(d1, . . . ,dn,o1, . . . ,om) ∈ ∏

1≤i≤n
Dvi × ∏

1≤j≤m
Dcj :

for each j, d∗j occurs in (d1, . . . ,dn) exactly oj times}

The global cardinality constraint can be considered a
generalization of the all-different constraint.
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Circuit constraint

Let s = (s1, . . . ,sn) be a permutation of {1, . . . ,n}.
Define Cs as the smallest set that contains 1 and with each
element i also si .
(s1, . . . ,sn) is called cyclic if Cs = {1, . . . ,n}.

Definition
Let v1, . . . ,vn be variables with domains Di = {1, . . . ,n}
(1≤ i ≤ n).

circuit(v1, . . . ,vn) :=
{(d1, . . . ,dn) ∈ D1×·· ·×Dn : (d1, . . . ,dn) is cyclic}

Given an assignment a = (d1, . . . ,dn), define

A := {(vi ,vdi ) : di ∈ Di ,1≤ i ≤ n} .
Then, a satisfies circuit(v1, . . . ,vn) if and only if (V ,A) is a
directed cycle (without proper sub-cycles).December 14, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 9 / 28
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Example: Traveling Salesperson Problem

Traveling Salesperson
Problem (TSP):
Given a set of n cities and
distances cij between city i and
city j, find the shortest route that
visits all cities and finishes in the
starting city.

TSP is not a constraint
satisfaction problem, but a
constraint optimization problem
. . .
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Constraint optimization problem

Definition
A constraint optimization problem (COP) is a constraint
satisfaction problem together with an objective function f that
assigns to each variable assignment a a value f (a) ∈Q.

Minimization COP: Find a solution a that minimizes f (a).
Maximization COP: Find a solution a that maximizes f (a).
Optimal solution: Solution to a minimization (maximization)
COP.

Decision problem associated to a COP:
Given an instance of a COP, (N, f ), and some threshold t ∈Q, is
there a solution a of P such that f (a)≥ t (f (a)≤ t, resp.)?
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The decision problem of TSP

vi : variable for city i with domain Di := {1, . . . ,n}\{i}
(read as: value of vi is the city to be visited next)

cij : distance between cities i and j (may not be symmetric)
t : bound for the total tour length

Then:

circuit(v1, . . . ,vn)

∑
1≤i≤n

civi ≤ t
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2 Filtering

Arc consistency
All-different Constraint
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Filtering

Constraint propagation techniques aim at filtering variable
domains: remove useless values (that cannot participate in
any solution) as early as possible.
Filtering allows false-positives (values are kept though they
are useless),
. . . ... but not false-negatives (useful values may not be
removed).
A constraint is “good” if it allows significant filtering (pruning
of domain values) with low computational efforts.
Constraint solver may benefit from exploiting the structure
of such good constraints.
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Filtering by enforcing arc consistency

In general, enforcing generalized arc consistency on a
constraint network requires exponential time w.r.t. the
largest arity of some constraint relation in the network.
Recall: Enforcing generalized arc consistency runs in time

O(erdr ),

where e is the number of constraints and r is the largest
arity of some constraint in the network,

Though general constraints have often high arity, there exist
efficient methods to enforce generalized arc consistency.

In the following we consider the all-different constraints.
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Value graphs

Definition
An undirected graph G = 〈V ,E〉 is bipartite if there exists a
partition S

·
∪ T of V such that for each {x,y} ∈ E, x ∈ S iff y ∈ T .

A directed graph G = 〈V ,A〉 is bipartite if there exists a partition
S
·
∪ T of V such that A⊆ (S×T )∪ (T ×S).

G is then written in the form G = 〈S,T ,E〉 (resp. G = 〈S,T ,A〉).

Definition
Let V be a set of variables and D be the union of all domains Dv
for v ∈ V .
The value graph of V is defined as the following bipartite graph:

G = 〈V ,D,E〉

where E = {{v,d} : v ∈ V ,d ∈ Dv}.
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Example: Value graph

Consider variables v1, . . . ,v4 with D1 = {b,c,d,e}, D2 = {b,c},
D3 = {a,b,c,d}, D4 = {b,c}.

Value graph:

a b c d e

v1 v2 v3 v4
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Matchings

Let G = 〈V ,E〉 be an undirected (simple) graph.

Definition
A matching in G is a set M ⊆ E of pairwisely disjoint edges.
A matching M covers a set S ⊆ V if S ⊆

⋃
M, i.e., each v ∈ S is

contained in some edge in M.
v ∈ V is M-free if M does not cover {v}.

Definition
Let M be a matching in G.
A path P = v0,e1 . . . ,ek ,vk in G is M-alternating if all the edges ei
are alternatingly out of and in M.
An M-alternating path P = v0,e1, . . . ,ek ,vk is called
M-augmenting if v0 and vk are M-free.
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Max-cardinality matching

Let G = 〈V ,E〉 be a graph and M be a matching in G.

Theorem (Peterson)
M is a max-cardinality matching (i.e., it is a matching of
maximum cardinality) if and only if there is no M-augmenting
path in G.

Remark: If M is a matching and v0, . . . ,vk is an M-augmenting
path, then

M′ := M O{{vi ,vi+1} : 0≤ i ≤ k−1}

is a matching with |M′| = |M|+1.
Hence a max-cardinality matching can be obtaind by repeatedly
searching for an M-augmenting path in G . . .
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Max-cardinality matching on bipartite graphs

Let G = 〈U,W ,E〉 be a bipartite graph and M be some matching
in G.
Define a directed bipartite graph GM = 〈U,W ,A〉 by

A := {(w,u) : {u,w} ∈M,u ∈ U,w ∈W}∪
{(u,w) : {u,w} ∈ E \M,u ∈ U,w ∈W}

Each directed path in GM is M-alternating.
If such a path starts and ends in an M-free vertex (starts in U,
ends in W ), it is an M-augmenting path in G.
If no M-augmenting path can be found, M is a max-cardinality
matching.

This can be used to compute a max-cardinality matching in time
O(|U| · |A|) (van der Waerden and König)
. . . can be improved to O(

√
|U| · |A|) (Hopcroft and Karp)
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Example: Computing a max-cardinality
matching

a b c d e

v1 v2 v3 v4

. . . and max-cardinality matching
M = {{v4,b},{v2,c},{v1,e},{v3,a}}
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All-different constraint and matching

Let V = {v1, . . . ,vn} be a set of variables and G be the value
graph of V . Let (d1, . . . ,dn) be a variable assignment.

Lemma
(d1, . . . ,dn) ∈ alldifferent(v1, . . . ,vn) if and only if
M = {{v1,d1}, . . . ,{vn,dn}} is a matching in G.

a b c d e

v1 v2 v3 v4
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Arc-consistent all-different constraint

Lemma
The constraint alldifferent(v1, . . . ,vn) is generalized
arc-consistent if and only if every edge in G belongs to a
matching in G that covers V.

Proof.
Simple (exercise!).
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Edges in max-cardinality matchings

Theorem
Let G be a graph and let M be a max-cardinality matching in G.
An edge e belongs to some max-cardinality matching in G if and
only if one of the following conditions holds:

e ∈M.
e is on an even-length M-alternating path starting at an
M-free vertex;
e is on an even-length M-alternating cycle.
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Enforcing arc consistency on all-different
constraints

1 Compute a max-cardinality matching M in the value graph of V
(can be done in time O(m

√
n) where m = ∑1≤i≤n |Di |)

2 Identify the even M-alternating paths starting in an M-free vertex and the
M-alternating cycles:

1 Define dir. bipartite graph G∗M = 〈V ,DV ,A〉 with A =
{(v,d) : v ∈ V ,{v,d} ∈M}∪{(d,v) : v ∈ V ,{v,d} ∈ E \M}

2 Compute the strongly connected components in GM (in time
O(n + m))

3 Mark arcs between vertices in the same component as “used”:
they belong to an even M-alternating cycle

4 Marc arcs as “used” that belong to a M-alternating path in GM that
starts in an M-free vertex (breadth-first search in time O(m)).

3 Update Dv ← Dv \{d} for all edges {v,d} where the corresponding arc
is not marked as “used”.
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Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

Start from max-cardinality matching
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Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

Compute strongly connected components
(e.g. by Kosaraju’s algorithm)
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Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

Mark “used” arcs
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Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

. . . and remove unused arcs
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Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

The all-different constraint is now arc-consistent
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