

All-different constraint	BURG
	Motivatio
Definition	Global Cons All-different
Let v_1, \ldots, v_n be variables each with a domain D	$p_i \ (1 \leq i \leq n).$
	Filtering
$alldifferent(v_1, \ldots, v_n) :=$	Literature
$\{(d_1,\ldots,d_n)\in D_1\times\cdots\times D_n: d_n\}$	$d_i \neq d_j$ for $i \neq j$
The all-different constraint is a simple, but widely constraint in constraint programming. It allows for compact modeling of CSP problems	y used global

5/28

UNI FREIBURG

Sum and

Cardinality

Literature

Example: Traveling Salesperson Problem

Traveling Salesperson Problem (TSP):

Given a set of *n* cities and distances c_{ij} between city *i* and city *j*, find the shortest route that visits all cities and finishes in the starting city.

TSP is not a constraint satisfaction problem, but a constraint optimization problem ...

10 / 28

December 14, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

Constraint optimization problem

UNI

All-differen

Sum and Cardinality

Filterina

Literature

Circuit

Definition

A constraint optimization problem (COP) is a constraint satisfaction problem together with an objective function *f* that assigns to each variable assignment *a* a value $f(a) \in \mathbb{Q}$.

- **Minimization COP**: Find a solution *a* that minimizes f(a).
- **Maximization COP**: Find a solution *a* that maximizes f(a).
- Optimal solution: Solution to a minimization (maximization) COP.

Decision problem associated to a COP:

Given an instance of a COP, (*N*, *f*), and some threshold $t \in \mathbb{Q}$, is there a solution *a* of *P* such that $f(a) \ge t$ ($f(a) \le t$, resp.)?

December 14, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

11 / 28

14 / 28

Filtering

	FREIBURG
able	Motivati
nto in	Filtering

15 / 28

Literature

- Constraint propagation techniques aim at filtering variable domains: remove useless values (that cannot participate in any solution) as early as possible.
- Filtering allows false-positives (values are kept though they are useless),
- useful values may not be removed).
- A constraint is "good" if it allows significant filtering (pruning of domain values) with low computational efforts.
- Constraint solver may benefit from exploiting the structure of such good constraints.

December 14, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

UNI FREIBURG Value graphs Definition An undirected graph $G = \langle V, E \rangle$ is bipartite if there exists a Motivatio Filtering partition $S \cup T$ of V such that for each $\{x, y\} \in E, x \in S$ iff $y \in T$. Arc consisten All-different A directed graph $G = \langle V, A \rangle$ is bipartite if there exists a partition Constraint Literature $S \cup T$ of *V* such that $A \subseteq (S \times T) \cup (T \times S)$. *G* is then written in the form $G = \langle S, T, E \rangle$ (resp. $G = \langle S, T, A \rangle$). Definition Let V be a set of variables and D be the union of all domains D_{V} for $v \in V$. The value graph of *V* is defined as the following bipartite graph: $G = \langle V, D, E \rangle$ where $E = \{ \{v, d\} : v \in V, d \in D_v \}.$ December 14, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 17 / 28

Filtering by enforcing arc consistency

In general, enforcing generalized arc consistency on a constraint network requires exponential time w.r.t. the largest arity of some constraint relation in the network. Recall: Enforcing generalized arc consistency runs in time

 $\mathcal{O}(erd^r),$

where e is the number of constraints and r is the largest arity of some constraint in the network,

- Though general constraints have often high arity, there exist efficient methods to enforce generalized arc consistency.
- In the following we consider the all-different constraints.

December 14, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

16 / 28

Motivation Filtering Arc consistence All-different Constraint

Matchings

Let $G = \langle V, E \rangle$ be an undirected (simple) graph.

Definition

A matching in *G* is a set $M \subseteq E$ of pairwisely disjoint edges. A matching *M* covers a set $S \subseteq V$ if $S \subseteq \bigcup M$, i.e., each $v \in S$ is contained in some edge in *M*. $v \in V$ is *M*-free if *M* does not cover $\{v\}$.

Definition

Let *M* be a matching in *G*. A path $P = v_0, e_1 \dots, e_k, v_k$ in *G* is *M*-alternating if all the edges e_i are alternatingly out of and in *M*. An *M*-alternating path $P = v_0, e_1, \dots, e_k, v_k$ is called *M*-augmenting if v_0 and v_k are *M*-free.

December 14, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

Max-cardinality matching

20 / 28

Motivation

Filtering

All-different

Constraint

Literature

Let $G = \langle V, E \rangle$ be a graph and M be a matching in G.

Theorem (Peterson)

BURG

UNI FREI N

19/28

Motivatio

Arc consiste All-different

Constraint

Literature

M is a max-cardinality matching (i.e., it is a matching of maximum cardinality) if and only if there is no M-augmenting path in G.

Remark: If M is a matching and v_0, \ldots, v_k is an M-augmenting path, then

$$M' := M \bigtriangledown \{\{v_i, v_{i+1}\} : 0 \le i \le k-1\}$$

is a matching with |M'| = |M| + 1.

Hence a max-cardinality matching can be obtaind by repeatedly searching for an *M*-augmenting path in $G \dots$

December 14, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

Example: Computing a max-cardinality UNI FREIBURG matching Motivation а b С е d All-different Constraint V_1 *V*2 V₃ V_4 ... and max-cardinality matching $M = \{\{v_4, b\}, \{v_2, c\}, \{v_1, e\}, \{v_3, a\}\}$ December 14, 2014 Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems 22 / 28

All-different constraint and matching

Let $V = \{v_1, ..., v_n\}$ be a set of variables and G be the value graph of V. Let $(d_1, ..., d_n)$ be a variable assignment.

Lemma

 $(d_1, \ldots, d_n) \in all different(v_1, \ldots, v_n)$ if and only if $M = \{\{v_1, d_1\}, \ldots, \{v_n, d_n\}\}$ is a matching in G.

Edges in max-cardinality matchings

UN FREIBURG

23 / 28

BURG

UNI REI

Motivation

Arc consist

All-different

Constraint

Literature

Motivatio

Arc consisten

All-different

Constraint

Literature

Theorem

Let G be a graph and let M be a max-cardinality matching in G. An edge e belongs to some max-cardinality matching in G if and only if one of the following conditions holds:

- *e* ∈ *M*.
- e is on an even-length M-alternating path starting at an M-free vertex;
- e is on an even-length M-alternating cycle.

BURG

FREI

Motivation

Filtering

All-different

Constraint

Lemma

The constraint all different (v_1, \ldots, v_n) is generalized arc-consistent if and only if every edge in G belongs to a matching in G that covers V.

Proof.

December 14, 2014	Wölfl, Nebel and Becker-Asano - Constraint Satisfaction Problems	24 / 28
• •		
Simple (exerci	se!).	
F1001.		

