
Constraint Satisfaction Problems
Search and Look-ahead

Albert-Ludwigs-Universität Freiburg

Stefan Wölfl, Christian Becker-Asano, and Bernhard Nebel
November 17, 2014

Search and Look-ahead

Enforcing consistency is one way of solving constraint
networks: Globally consistent networks can easily be solved
in polynomial time.
However, enforcing global consistency is costly in time and
space: it not only takes exponential time to compute an
equivalent globally consistent network, but also exponential
space to store it.
Thus, it is usually advisable to only enforce local
consistency (e. g., arc consistency or path consistency),
and compute a solution through search through the
remaining possibilities.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 2 / 50

State Spaces

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 3 / 50

State spaces: Informally

The fundamental abstractions for search are state spaces.
They are defined in terms of:

states, representing a partial solution to a problem
(which may or may not be extensible to a full solution)
an initial state from which to search for a solution
goal states representing solutions
operators that define how a new state can be obtained from
a given state

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 5 / 50

State spaces: Formally

Definition (state space)
A state space is a 4-tuple S = 〈S,s0,S?,O〉, where

S is a finite set of states,
s0 ∈ S is the initial state,
S? ⊆ S is the set of goal states, and
O is a finite set of operators, where each operator o ∈ O is
a partial function on S, i. e. o : S′→ S for some S′ ⊆ S.

We say that an operator o is applicable in state s if o(s) is
defined.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 6 / 50

Search

Search is the problem of finding a sequence of operators that
transforms the initial state into a goal state.

Definition (solution of a state space)
Let S = 〈S,s0,S?,O〉 be a state space, and let o1, . . . ,on ∈ O be
an operator sequence.
Inductively define result states r0, r1, . . . , rn ∈ S∪{invalid}:

r0 := s0
For i ∈ {1, . . . ,n}, if oi is applicable in ri−1, then
ri := oi(ri−1). Otherwise, ri := invalid.

The operator sequence is a solution iff rn ∈ S?.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 7 / 50

Search graphs and search algorithms

State spaces can be depicted as state graphs: labeled
directed graphs where states are vertices and there is a
directed arc from s to s′ with label o iff o(s) = s′ for some
operator o.
There are many classical algorithms for finding solutions in
state graphs, e. g. depth-first search, breadth-first search,
iterative deepening search, or heuristic algorithms like A∗.
These algorithms offer different trade-offs in terms of
runtime and memory usage.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 8 / 50

State spaces for constraint networks

The state spaces for constraint networks usually have two
special properties:

The search graphs are trees (i. e., there is exactly one path
from the initial state to any reachable search state).
All solutions are at the same level of the tree.

Due to these properties, variations of depth-first search are
usually the method of choice for solving constraint networks.

We will now define state spaces for constraint networks.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 9 / 50

Unordered search space

Definition (unordered search space)
Let N = 〈V ,D,C〉 be a constraint network.
The unordered search space of N is the following state space:

states: partial solutions of N (i. e., consistent assignments)
initial state: the empty assignment /0

goal states: solutions of N
operators: for each vi ∈ V and d ∈ Di , one operator ovi=d as
follows:

ovi=d is applicable in those states s
where vi is not defined and s∪{(vi ,d)} is consistent
ovi=d (s) = s∪{(vi ,d)}

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 10 / 50

Unordered search space: Intuition

The unordered search space formalizes the systematic
construction of solutions, by consistently extending partial
solutions until a solution is found.

Later on, we will consider alternative (non-systematic)
search techniques.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 11 / 50

Unordered search space: Discussion

In practice, one will only search for solutions in subspaces of the
complete unordered search space:

Consider a state s where vi ∈ V has not been assigned a
value. If no solution can be reached from any successor
state for the operators ovi=d (d ∈ Di), then no solution can
be reached from s.
There is no point in trying operators ovj=d ′ for other
variables vj 6= vi in this case!
Thus, it is sufficient to consider operators for one particular
unassigned variable in each search state.
How to decide which variable to use is an important issue.
Here, we first consider static variable orderings.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 12 / 50

Ordered search spaces

Let N = 〈V ,D,C〉 be a constraint network.

Definition (variable ordering)
A variable ordering of N is a permutation of the variable set V .
We write variable orderings in sequence notation: v1, . . . ,vn.

Definition (ordered search space)
Let σ = v1, . . . ,vn be a variable ordering of N.
The ordered search space of N along ordering σ is the state
space obtained from the unordered search space of N by
restricting each operator ovi=di to states s with |s| = i−1.

In other words, in the initial state, only v1 can be assigned,
then only v2, then only v3, . . .

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 13 / 50

The importance of good orderings

All ordered search spaces for the same constraint network
contain the same set of solution states.
However, the total number of states can vary dramatically
between different orderings.
The size of a state space is a (rough) measure for the
hardness of finding a solution, so we are interested in small
search spaces.
One way of measuring the quality of a state space is by
counting the number of dead ends: the fewer, the better.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 14 / 50

Dead ends

Definition (dead end)
A dead end of a state space is a state which is not a goal state
and in which no operator is applicable.

In an ordered search space, a dead end is a partial solution
that cannot be consistently extended to the next variable in
the ordering.
In the unordered search space, a dead end is a partial
solution that cannot be consistently extended to any of the
remaining variables.

In both cases, this partial solution cannot be part of a solution.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 15 / 50

Backtrack-free search spaces

Definition (backtrack-free)
A state space is called backtrack-free if it contains no dead ends.

A constraint network N is called backtrack-free along variable
ordering σ if the ordered search space of N along σ is
backtrack-free.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 16 / 50

Backtrack-free networks: Discussion

Backtrack-free networks are the ideal case for search
algorithms.
Constraint networks are rarely backtrack-free along any
ordering in the way they are specified naturally.
However, constraint networks can be reformulated
(replaced with an equivalent constraint network) to reduce
the number of dead ends.
One way of doing this is by enforcing a local consistency
property like arc consistency or path consistency, which
leads to a tighter network.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 17 / 50

Constraint tightness and dead ends

Lemma
Let N and N′ be equivalent constraint networks.
If N′ is at least as tight as N, then

the unordered search space of N′ has at most as many
dead ends as the unordered search space of N, and
the ordered search space of N′ along any ordering σ has at
most as many dead ends as the ordered search space of N
along the same ordering σ .

Proof.
For every dead end of N′ (in either kind of state space), the same
assignment is a state in the state space for N which has at least one
dead end as a descendant.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 18 / 50

Global consistency and dead ends

Lemma
Let N be a constraint network.
The following three statements are equivalent:

The unordered search space of N is backtrack-free.
The ordered search space of N is backtrack-free along
each ordering σ .
N is globally consistent.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 19 / 50

Reducing dead ends further

Replacing constraint networks by tighter, equivalent
networks is a powerful way of reducing dead ends.
However, one can go much further by also tightening
constraints during search, for example by enforcing local
consistency for a given partial instantiation.
We will consider such search algorithms soon.
In general, there is a trade-off between reducing the number
of dead ends and the overhead for consistency reasoning.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 20 / 50

Backtracking

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 21 / 50

Backtracking

Backtracking traverses the search space of partial instantiations
in a depth-first manner in two phases:

forward phase: variables are selected in sequence; the
current partial solution is extended by assigning a
consistent value to the next variable (if possible)
backward phase: if no consistent instantiation for the
current variable exists, we return to the previous variable.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 23 / 50

Backtracking: Example

Consider the constraint network defined by the following coloring
problem:

r, b, g

v1

b, g

v2

r, b
v3 r, b

v4

b, g

v5

r, g, y
v6

r, b

v7

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 24 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking: Example

On this example we apply the backtracking algorithm by using
the variable ordering: v1,v7,v4,v5,v6,v3,v2, and we obtain:

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 25 / 50

Backtracking algorithm (recursive version)

Backtracking(N,a):
Input: a constraint network N = 〈V ,D,C〉 and

a partial solution a of N
(initially: the empty instantiation a = {})

Output: a solution of N or “inconsistent”

if a is not locally consistent with N:
return “inconsistent”

if a is defined for all variables in V :
return a

select some variable vi for which a is not defined
for each value d from Di :

a′ := a∪{(vi ,d)}
a′′← Backtracking(N,a′)
if a′′ is not “inconsistent”:

return a′′
return “inconsistent”

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 26 / 50

Backtracking algorithm (recursive version 2)

Backtracking(N,a):
Input: a constraint network N = 〈V ,D,C〉 and

a partial solution a of N
(initially: the empty instantiation a = {})

Output: a solution of N or “inconsistent”

if a is defined for all variables in V :
return a

select some variable vi for which a is not defined
for each value d from Di :

a′ := a∪{(vi ,d)}
if a′ is locally consistent with N:

a′′← Backtracking(N,a′)
if a′′ is not “inconsistent”:

return a′′
return “inconsistent”

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 27 / 50

Branching strategies

Enumeration The variable v is instantiated in turn to each value
in its domain. First v = d1, then v = d2, etc.

Binary choice points The variable v is instantiated to some
value in its domain. Assuming the value 1 is
chosen in our example, two branches are
generated and the constraints v = d1 and v 6= d1
are posted, respectively.

Domain splitting The domain of the variable v is split in two
parts. For instance, with a domain of size 4:
choose first v = {d1,d2}, then v = {d3,d4}

Those are identical when constraints are binary. For this lecture,
we will only consider the enumeration branching strategy.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 28 / 50

Look-ahead strategies

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 29 / 50

Improvements of Backtracking

Backtracking suffers from thrashing: partial solutions that
cannot be extended to a full solution may be reprocessed
several times (always leading to a dead end in the search
space)
Idea: Improve (practical) performance by

preprocessing the search space underneath the currently
selected variable
improving (in a dynamic way) the search strategy

⇒ two schemes (related to the two phases of backtracking
search), namely look-ahead and look-back strategies

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 31 / 50

Look-ahead and look-back

Look-ahead: invoked when next variable or next value is
selected. For example:

Which variable should be instantiated next?
 prefer variables that impose tighter constraints on the
rest of the search space
Which value should be chosen for the next variable?
 maximize the number of options for future assignments

Look-back: invoked when the backtracking step is
performed after reaching a dead end. For example:

How deep should we backtrack?
 avoid irrelevant backtrack points (by analyzing reasons
for the dead end and jumping back to the source of failure)
How can we learn from dead ends?
 record reasons for dead ends as new constraints so that
the same inconsistencies can be avoided at later stages of
the search

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 32 / 50

Look-ahead and look-back

Look-ahead: invoked when next variable or next value is
selected. For example:

Which variable should be instantiated next?
 prefer variables that impose tighter constraints on the
rest of the search space
Which value should be chosen for the next variable?
 maximize the number of options for future assignments

Look-back: invoked when the backtracking step is
performed after reaching a dead end. For example:

How deep should we backtrack?
 avoid irrelevant backtrack points (by analyzing reasons
for the dead end and jumping back to the source of failure)
How can we learn from dead ends?
 record reasons for dead ends as new constraints so that
the same inconsistencies can be avoided at later stages of
the search

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 32 / 50

Backtracking with look-ahead

LookAhead(N,a):
Input: a constraint network N = 〈V ,D,C〉 and a partial

solution a of N (initialy: the empty instantiation a = {})
Output: a solution of N or “inconsistent”
SelectValue(vi ,Di ,a,N): procedure that selects and deletes a

consistent value d ∈ Di ; returns d and a refinement of N;
returns “null”, if all a∪{(vi ,d)} are inconsistent

if a is defined for all variables in V :
return a

select some variable vi for which a is not defined
N′← N, D′i ← Di // (work on a copy)
while D′i is non-empty

d,N′′← SelectValue(vi ,D′i ,a,N
′)

if d is not “null”:
a′← LookAhead(N′′,a∪{(vi ,d)})
if a′ is not “inconsistent”:

return a′
return “inconsistent”

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 33 / 50

Arc-consistency based look-ahead

1 Forward Checking: propagate the effect of a value-selection
to each single non-instantiated variables

2 Partial Look-Ahead . . .
3 Full Look-Ahead . . .
4 Real Full Look-Ahead: enforce full arc consistency on the

future variables after each assignment to the current
variable

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 34 / 50

SelectValue-ForwardChecking

SelectValue-ForwardChecking(vi ,D′i ,a,N):

select and delete d from D′i
for each vj sharing a constraint with vi for which a is not defined

D′j ← Dj // (work on a copy)
for each value d ′ ∈ D′j

if not consistent(a∪{(vi ,d), (vj ,d ′)})
remove d ′ from D′j

if any future D′j is empty // (vi 7→ x leads to a dead end)
return “null”

Dj ← D′j // (propagate all future Dj)
return d

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 35 / 50

SelectValue-RealFullLookAhead

SelectValue-RealFullLookAhead(vi ,D′i ,a,N):

select and delete d from D′i
D′j ← Dj (for all non-assigned vj 6= vi work on a copy)
repeat

for each vj (j 6= i) for which a is not defined
for each vk (k 6= i, j) for which a is not defined

for each value d ′ ∈ D′j
if there is no value d ′′ ∈ D′k such that

consistent(a∪{(vi ,d), (vj ,d ′), (vk ,d ′′)})
remove d ′ from D′j

until no value was removed
if any future D′j is empty // (vi 7→ d leads to a dead end)

return “null”
Dj ← D′j // (propagate all future Dj)
return d

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 36 / 50

Look-ahead example (no look-ahead)

Example

s1
s2 s3

s4

s5

Red Blue Green
s1
s2
s3
s4
s5

Initial State

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 37 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1
s2
s3
s4
s5

Initial State

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2
s3
s4
s5

Decision

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X
s3
s4 X
s5 X

Propagation

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3
s4 X
s5 X

Decision

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 X
s4 X
s5 X X

Propagation

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 X O
s4 X
s5 X X

Decision

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 X O
s4 X X
s5 X X X

Propagation

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 O X
s4 X
s5 X X

Decision

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 O X
s4 X O
s5 X X

Decision

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Look-ahead with forward checking

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 O X
s4 X O
s5 X X O

Decision

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 38 / 50

Example: Real full look-ahead

Example

s1
s2 s3

s4

s5

Red Blue Green
s1
s2
s3
s4
s5

Initial State

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 39 / 50

Example: Real full look-ahead

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2
s3
s4
s5

Decision

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 39 / 50

Example: Real full look-ahead

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X
s3
s4 X
s5 X

Propagation

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 39 / 50

Example: Real full look-ahead

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3
s4 X
s5 X

Decision

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 39 / 50

Example: Real full look-ahead

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 X
s4 X
s5 X X

Propagation

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 39 / 50

Example: Real full look-ahead

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 X
s4 X
s5 X X O

Propagation

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 39 / 50

Example: Real full look-ahead

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 X X
s4 X X
s5 X X O

Propagation

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 39 / 50

Example: Real full look-ahead

Example

s1
s2 s3

s4

s5

Red Blue Green
s1 O
s2 X O
s3 O X X
s4 X O X
s5 X X O

Propagation

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 39 / 50

Arc consistency-based look-ahead

1 Forward checking: O(e · k2),
2 . . .
3 Real full look-ahead (also known as MAC): with AC3-variant

in O(e · k3),

where k is the cardinality of the largest domain and e is the
number of constraints.

Remark
Keeping the balance between pruning the search space and cost
of look-ahead
Good tradeoffs are nowadays:

Forward checking
Real full look-ahead

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 40 / 50

Further SelectValue functions

Dynamic look-ahead value orderings: estimate likelihood that a
non-rejected value leads to a solution. For example:

MinConflicts (MC): prefer a value that removes the smallest
number of values from the domains of future variables

MaxDomainSize (MD): prefer a value that ensures the
largest minimum domain sizes of future variables (i.e.,
calculate nd := minvj |D′j | after assigning vi 7→ d, and nd ′ for
vi 7→ d ′, respectively; if nd > nd ′ , then prefer vi 7→ d)

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 41 / 50

Choosing a variable order

Backtracking and LookAhead leave the choice of variable
ordering open.
Ordering greatly affects performance.
 exercises

We distinguish
Dynamic ordering:

In each state, decide independently which variable to assign
to next.
Can be seen as search in a subspace of the unordered
search space.

Static ordering:
A variable ordering σ is fixed in advance.
Search is conducted in the ordered search space along σ .

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 42 / 50

Dynamic variable orderings

Common heuristic:

Fail-first
Always select a variable whose remaining domain has a minimal
number of elements.

intuition: few subtrees small search space
extreme case: only one value left no search
⇒ compare Unit Propagation in DPLL procedure
Should be combined with a constraint propagation
technique such as Forward Checking or Arc Consistency.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 43 / 50

Static variable orderings

Static variable orderings. . .
lead to no overhead during search
but are less flexible than dynamic orderings

In practice, they are often very good if chosen properly.

Popular choices:
Max-cardinality ordering
Min-width ordering
Cycle cutset ordering

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 44 / 50

Static variable orderings: Max-cardinality
ordering

Max-cardinality ordering
1 Start with an arbitrary variable.
2 Repeatedly add a variable such that the number of

constraints whose scope is a subset of the set of added
variables is maximal. Break ties arbitrarily.

 for the other two ordering strategies, we first need to lay some
foundations

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 45 / 50

Ordered graphs

Definition (ordered graph)
Let G = 〈V ,E〉 be a graph.

An ordered graph for G is a tuple 〈V ,E,σ〉, where σ is an
ordering (permutation) of the vertices in V .

As usual, we use sequence notation for the ordering:
σ = v1, . . . ,vn.
We write v ≺ v ′ if v precedes v ′ in σ .

The parents of v ∈ V in the ordered graph are the neighbors that
precede it: {u ∈ V | u ≺ v,{u,v} ∈ E}.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 46 / 50

Width of a graph

Definition (width)
The width of a vertex v of an ordered graph is the number of
parents of v.

The width of an ordered graph is the maximal width of its
vertices.

The width of a graph G is the minimal width of all ordered graphs
for G.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 47 / 50

Graphs of width 1

Theorem
A graph with at least one edge has width 1 iff it is a forest (i.e., iff
it contains no cycles).

Proof.
A graph with at least one edge has at least width 1.
(⇒): If a graph has a cycle consisting of vertices C, then in any
ordering σ , one of the vertices in C will appear last. This vertex will
have width at least 2. Thus, the width of the ordering cannot be 1.
(⇐): Consider a graph 〈V ,E〉 with no cycles. In every connected
component, pick an arbitrary vertex; these are called root nodes.
Construct ordered graph 〈V ,E,σ〉 by putting root nodes first in σ , then
nodes with distance 1 from a root node, then distance 2, 3, etc. This
ordered graph has width 1.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 48 / 50

Graphs of width 1

Theorem
A graph with at least one edge has width 1 iff it is a forest (i.e., iff
it contains no cycles).

Proof.
A graph with at least one edge has at least width 1.
(⇒): If a graph has a cycle consisting of vertices C, then in any
ordering σ , one of the vertices in C will appear last. This vertex will
have width at least 2. Thus, the width of the ordering cannot be 1.
(⇐): Consider a graph 〈V ,E〉 with no cycles. In every connected
component, pick an arbitrary vertex; these are called root nodes.
Construct ordered graph 〈V ,E,σ〉 by putting root nodes first in σ , then
nodes with distance 1 from a root node, then distance 2, 3, etc. This
ordered graph has width 1.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 48 / 50

Graphs of width 1

Theorem
A graph with at least one edge has width 1 iff it is a forest (i.e., iff
it contains no cycles).

Proof.
A graph with at least one edge has at least width 1.
(⇒): If a graph has a cycle consisting of vertices C, then in any
ordering σ , one of the vertices in C will appear last. This vertex will
have width at least 2. Thus, the width of the ordering cannot be 1.
(⇐): Consider a graph 〈V ,E〉 with no cycles. In every connected
component, pick an arbitrary vertex; these are called root nodes.
Construct ordered graph 〈V ,E,σ〉 by putting root nodes first in σ , then
nodes with distance 1 from a root node, then distance 2, 3, etc. This
ordered graph has width 1.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 48 / 50

Significance of width

To find solutions to constraint networks, we are interested in the
width of the primal constraint graph.

The width of a graph is a (rough) difficulty measure.
For width 1, we can make this more precise (next slide).
In general, there is a provable relationship between solution
effort and a closely related measure called induced width.

The ordering that leads to an ordered graph of minimal
width is usually a good static variable ordering.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 49 / 50

Constraint graphs with width 1

Theorem
Let N be a constraint network whose primal constraint graph has
width 1. Then N can be solved in polynomial time.

Note: Such a constraint network must be binary, as constraints
of higher arity ≥ 3 induce cycles in the primal constraint graph.

Lemma
Let N be an arc-consistent (normalized) constraint network
whose primal constraint graph has width 1, and where all
variable domains are non-empty. Then N is backtrack-free along
any ordering with width 1.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 50 / 50

Constraint graphs with width 1

Theorem
Let N be a constraint network whose primal constraint graph has
width 1. Then N can be solved in polynomial time.

Note: Such a constraint network must be binary, as constraints
of higher arity ≥ 3 induce cycles in the primal constraint graph.

Lemma
Let N be an arc-consistent (normalized) constraint network
whose primal constraint graph has width 1, and where all
variable domains are non-empty. Then N is backtrack-free along
any ordering with width 1.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 50 / 50

Constraint graphs with width 1 (ctd.)

Proof of the lemma.
Let N be such a constraint network, and let σ = v1, . . . ,vn be a width-1
ordering for N. We must show that all partial solutions of the form
{v1 7→ d1, . . . ,vi 7→ di} for 0≤ i < n can be consistently extended to
variable vi+1.
Since σ has width 1, the width of vi+1 is 0 or 1.

vi+1 has width 0: There is no constraint between vi+1 and any
assigned variable, so any value in the (non-empty) domain of vi+1
is a consistent extension.

vi+1 has width 1: There is exactly one variable vj ∈ {v1, . . . ,vi}
with a constraint between vj and vi+1. For every choice (vj 7→ dj),
there must be a consistent choice (vi+1 7→ di+1) because of arc
consistency.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 51 / 50

Constraint graphs with width 1 (ctd.)

Proof of the lemma.
Let N be such a constraint network, and let σ = v1, . . . ,vn be a width-1
ordering for N. We must show that all partial solutions of the form
{v1 7→ d1, . . . ,vi 7→ di} for 0≤ i < n can be consistently extended to
variable vi+1.
Since σ has width 1, the width of vi+1 is 0 or 1.

vi+1 has width 0: There is no constraint between vi+1 and any
assigned variable, so any value in the (non-empty) domain of vi+1
is a consistent extension.

vi+1 has width 1: There is exactly one variable vj ∈ {v1, . . . ,vi}
with a constraint between vj and vi+1. For every choice (vj 7→ dj),
there must be a consistent choice (vi+1 7→ di+1) because of arc
consistency.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 51 / 50

Constraint graphs with width 1 (ctd.)

Proof of the lemma.
Let N be such a constraint network, and let σ = v1, . . . ,vn be a width-1
ordering for N. We must show that all partial solutions of the form
{v1 7→ d1, . . . ,vi 7→ di} for 0≤ i < n can be consistently extended to
variable vi+1.
Since σ has width 1, the width of vi+1 is 0 or 1.

vi+1 has width 0: There is no constraint between vi+1 and any
assigned variable, so any value in the (non-empty) domain of vi+1
is a consistent extension.

vi+1 has width 1: There is exactly one variable vj ∈ {v1, . . . ,vi}
with a constraint between vj and vi+1. For every choice (vj 7→ dj),
there must be a consistent choice (vi+1 7→ di+1) because of arc
consistency.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 51 / 50

Constraint graphs with width 1 (ctd.)

Proof of the lemma.
Let N be such a constraint network, and let σ = v1, . . . ,vn be a width-1
ordering for N. We must show that all partial solutions of the form
{v1 7→ d1, . . . ,vi 7→ di} for 0≤ i < n can be consistently extended to
variable vi+1.
Since σ has width 1, the width of vi+1 is 0 or 1.

vi+1 has width 0: There is no constraint between vi+1 and any
assigned variable, so any value in the (non-empty) domain of vi+1
is a consistent extension.

vi+1 has width 1: There is exactly one variable vj ∈ {v1, . . . ,vi}
with a constraint between vj and vi+1. For every choice (vj 7→ dj),
there must be a consistent choice (vi+1 7→ di+1) because of arc
consistency.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 51 / 50

Constraint graphs with width 1 (ctd.)

Proof of the theorem.
We can enforce arc consistency and compute a width 1 ordering in
polynomial time. If the resulting network has any empty variable
domains, it is trivially unsolvable. Otherwise, by the lemma, it can be
solved in polynomial time by the Backtracking procedure.

Remark: Enforcing full arc consistency is actually not necessary;
a limited form of consistency is sufficient. (We do not discuss this
further.)

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 52 / 50

Static variable orderings: Min-width ordering

Min-width ordering
Select a variable ordering such that the resulting ordered
constraint graph has minimal width among all choices.

Remark: Can be computed efficiently by a greedy algorithm:
1 Choose a vertex v with minimal degree and remove it from

the graph.
2 Recursively compute an ordering for the remaining graph,

and place v after all other vertices.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 53 / 50

Static variable orderings: Cycle cutset
ordering

Definition (cycle cutset)
Let G = 〈V ,E〉 be a graph.
A cycle cutset for G is a vertex set V ′ ⊆ V such that the
subgraph induced by V \V ′ has no cycles.

Cycle cutset ordering
1 Compute a (preferably small) cycle cutset V ′.
2 First order all variables in V ′ (using any ordering strategy).
3 Then order the remaining variables, using a width-1

ordering for the subnetwork where the variables in V ′ are
removed.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 54 / 50

Cycle cutsets: Remarks

If the network is binary and the search algorithm enforces
arc consistency after assigning to the cutset variables, no
further search is needed at this point.
 runtime O(k|V ′| ·p(‖N‖)) for some polynomial p

However, finding minimum cycle cutsets is NP-hard.
Even finding approximate solutions is provably hard.
However, in practice good cutsets can usually be found.

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 55 / 50

Literature

Rina Dechter.
Constraint Processing,
Chapters 4 and 5, Morgan Kaufmann, 2003

November 17, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems 56 / 50

