# Constraint Satisfaction Problems

Albert-Ludwigs-Universität Freiburg

### Stefan Wölfl, Christian Becker-Asano, and Bernhard Nebel

October 20, 2014





#### Introduction

Constraint Satisfaction

Real World Applications

Solving Constraints

Contents of the lecture

Organization

- Constraint Satisfaction Problems
- Real World Applications
- Solving Constraints
- Contents of the lecture

### Constraints

### What is a constraint?

1 a: the act of constraining b: the state of being checked, restricted, or compelled to avoid or perform some action ...
c: a constraining condition, agency, or force ...

**2 a:** repression of one's own feelings, behavior, or actions **b:** a sense of being constrained ...

(from Merriam-Webster's Online Dictionary)

### Usage

- In programming languages, constraints are often used to restrict the domains of variables.
- In databases, constraints can be used to specify integrity conditions.

In mathematics, a constraint is a requirement on solutions of optimization problems October 20, 2014 Wölfl, Nebel and Becker Asano – Constraint Satisfaction Problems 4/34

#### Introduction

Constraint Satisfaction Problems

Real World Applications

Solving Constrain Contents of the

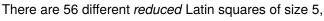
Organizatior





Constraint Satisfaction Problems

Real World Applications


Solving Constraint:

Contents of the lecture

Organization

### Examples:

- Latin squares
- Eight queens problem
- Sudoku
- Map coloring problem
- Boolean satisfiability



9408 squares of size 6, 16.942.080 squares of size 7, 535.281.401.856 squares of size 8, ...

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix}$$

• How can one fill an 
$$n \times n$$
 table with *n* different symb

How can one fill an 
$$n \times n$$
 table with *n* different symbols

#### 6/34

Constraint Satisfaction Problems

Real World Applications

Contents of the

lecture



### Latin square

Problem:

### Problem:

- Fill a partially completed 9 × 9 grid such that
- ... each row, each column, and each of the nine 3 × 3 grids contains the numbers from 1 to 9.

| 2 | 5 |   |   | 3 |   | 9 |   | 1 |
|---|---|---|---|---|---|---|---|---|
|   | 1 |   |   |   | 4 |   |   |   |
| 4 |   | 7 |   |   |   | 2 |   | 8 |
|   |   | 5 | 2 |   |   |   |   |   |
|   |   |   |   | 9 | 8 | 1 |   |   |
|   | 4 |   |   |   | 3 |   |   |   |
|   |   |   | 3 | 6 |   |   | 7 | 2 |
|   | 7 |   |   |   |   |   |   | 3 |
| 9 |   | 3 |   |   |   | 6 |   | 4 |



#### Introduction

Constraint Satisfaction Problems

Real World Applications

Solving Constraint:

Contents of the lecture

Organization

### Problem:

- How can one put 8 queens on a standard chess board (8 × 8-board)
- ....such that no queen can attack any other queen?

### Solutions:

- The puzzle has 12 unique solutions (up to rotations and reflections)
- Old problem proposed in 1848.
- Various variants
  - knights (instead of queens)
  - 3D
  - *n* queens on an  $n \times n$ -board

Satisfaction Problems

Real World Applications

Solving Constraint

lecture

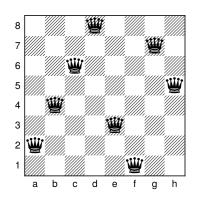
Organizatior



### A solution ...



#### Introduction


Constraint Satisfaction Problems

Real World Applications

Solving Constraints

Contents of the lecture

Organization



### A solution of the 8-queens problem

October 20, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

9/34

### Constraint Satisfaction Problem (CSP)

### Definition

- A constraint network is defined by:
  - a finite set of variables
  - a (finite) domain of values for each variable
  - a finite set of constraints (i.e., binary, ternary, ... relations defined between the variables)

### Problem

Is there a solution of the network, i.e., an assignment of values to the variables such that all constraints are satisfied?

### Introduction

Constraint Satisfaction Problems

Real World Applications

Solving Constraints

Contents of the lecture

Organizatior



### Problem:

- $\blacksquare$  Can one color the nodes of a given graph with k colors
- ... such that all nodes connected by an edge have different colors?

### Reformulated as a constraint network:

- Variables: the nodes of the graph
- **Domains:** "colors"  $\{1, \ldots, k\}$  for each variable
- Constraints: nodes connected by an edge must have different values
- This constraint network has a particular restricted form:
  - only binary constraints
  - domains are finite

#### Introduction

Constraint Satisfaction Problems

Real World Applications

Solving Constraints

lecture

Organizatio



## Crossword puzzle

### Problem instance:

- Variables: empty squares in a crossword puzzle;
- **Domains:** letters  $\{A, B, C, \dots, Z\}$  for each variable;
- Constraints: relations defined by a given set of words that need (or are allowed) to occur in the completed puzzle.

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|----|----|----|----|----|----|----|----|
| 9  |    | 10 |    | 11 | 12 |    | 13 |
| 14 | 15 | 16 | 17 | 18 |    | 19 | 20 |
|    | 21 | 22 |    | 23 | 24 | 25 |    |

#### Introduction

Constraint Satisfaction Problems

Real World Applications

Solving Constraint

Contents of the lecture

Organizatior

### SAT

Given a propositional logic formula in CNF, is the formula satisfiable?

As a constraint satisfaction problem:

Problem instance (Boolean constraint network):

- Variables: (propositional) variables;
- Domains: truth values {0,1} for each variable;
- Constraints: defined by a clause in the formula.

Example:  $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_4)$ 





#### Introduction

Constraint Satisfaction Problems

Real World Applications

Solving Constraint:

Contents of the lecture

Organizatior

## Traveling salesperson problem

# Traveling salesperson problem (TSP):

Given a set of *n* cities and distances  $c_{ij}$  between city *i* and city *j*, find the shortest route that visits all cities and finishes in the starting city.

TSP is not a constraint satisfaction problem, but a constraint optimization problem

. . .



#### Introduction

Constraint Satisfaction Problems

Real World Applications

Solving Constrain Contents of the

Organizatio

### Vehicle routing problem (VRP):

Given a set of goods that to need to be delivered from a central depot to costumers; and given a fleet of trucks that can transport the goods: find an assignment of routes to the trucks minimizes the total route cost.

Dozens of variants: Capacitated Vehicle Routing Problem (CVRP), ... with Pickup and Delivery (VRPPD), ... with time windows (CRPTW), ...

#### Introduction

Constraint Satisfaction Problems

Real World Applications

Solving Constraint Contents of the

Organization

In practice, not only constraint satisfaction, but constraint optimization is required.

### Seminar topic assignment

October 20, 2014

- Given n students who want to participate in a seminar; m topics are available to be worked on by students; each topic can be worked on by at most one student, and each student has preferences which topics s/he would like to work on;
- … how to assign topics to students?

16/34

Constraint Satisfaction Problems

Real World Applications

Solving Constraint Contents of the

Organization



Constraint Satisfaction Problems

Real World Applications

Solving Constraint

Organization

### CSP/COP techniques can be used in

- civil engineering (design of power plants, water and energy supply, transportation and traffic infrastructure)
- mechanical engineering (design of machines, robots, vehicles)
- digital circuit verification
- automated timetabling
- air traffic control
- finance



Constraint Satisfaction Problems

Real World Applications

#### Solving Constraints

Contents of the lecture

Organization

### Theorem

It is NP-hard to decide solvability of CSPs.

Since *k*-colorability (SAT, 3SAT) is NP-complete, solvability of CSPs in general must be NP-hard.

Question: Is CSP solvability in NP?

### Enumeration of all assignments and testing

- → ... too costly
  - Backtracking search
- numerous different strategies, often "dead" search paths are explored extensively
  - Constraint propagation: elimination of obviously impossible values
  - Interleaving backtracking and constraint propagation: constraint propagation at each generated search node
  - Many other search methods, e.g., local/stochastic search, etc.

### Introduction

Constraint Satisfaction Problems

Real World Applications

#### Solving Constraints

Contents of the lecture

Organizatior

Solving CSPs



### Contents I



#### troduction

Constraint Satisfaction

Real World Applications

Solving Constrain

Contents of the lecture

Organization

- Introduction and mathematical background
  - Sets, relations, graphs
  - Constraint networks and satisfiability
  - Binary constraint networks
  - Simple solution methods (backtracking, etc.)
- Inference-based methods
  - Arc and path consistency
  - k-consistency and global consistency
- Search methods
  - Backtracking
  - Backjumping
  - Comparing different methods
  - Stochastic local search

### Contents II



#### Introduction

Constraint Satisfaction

Real World Applications

Solving Constrain

Contents of the lecture

Organization

- Global constraints
- Constraint optimization
- Selected advanced topics
  - Expressiveness vs complexity of constraint formalisms
  - Qualitative constraint networks

### 2 Organization



#### Introduction

#### Organization

Time, Location,

Web

Lecturers

Exercises

Course goa

- Time, Location, Web
- Lecturers
- Exercises
- Course goals
- Literature

### Where

Bld. 51, Room SR 00 006

### When

Monday, 10:15–12:00 Wednesday, 10:15–11:00 (+ exercises: 11:15–12:00)

### No lectures

24-12-2014 – 06-01-2015 (Christmas break)

### Web Page

http:

//www.informatik.uni-freiburg.de/~ki/teaching/ws1415/csp/



#### Introduction

#### Organization

Time, Location, Web

Lecturers

Exercises

Course goa

### Lecturers

### Prof. Bernhard Nebel

Bld. 52, Room 00-029 Phone: 0761/203-8221 *Email:* nebel@informatik.uni-freiburg.de

### Dr. Christian Becker-Asano

Bld. 52, Room 00-042 Phone: 0761/203-8251 *Email:* basano@informatik.uni-freiburg.de

### Dr. Stefan Wölfl

Bld. 52, Room 00-043 Phone: 0761/203-8228 *Email:* woelfl@informatik.uni-freiburg.de



25/34

Organization

Time, Location, Web

Lecturers

Exercises

Course goa





#### Organization

Time, Location, Web

Lecturers

Exercises

Course goal

Literature

### Where

Bld. 51, Room SR 00 006

### When

Wednesday, 11:15-12:00

### Course prerequisites & goals

### Goals

- Acquiring skills in constraint processing
- Understanding the principles behind different solving techniques
- Being able to read and understand research literature in the area of constraint satisfaction
- Being able to complete a project (thesis) in this research area

### Prerequisites

- Basic knowledge in the area of AI
- Basic knowledge in formal logic
- Basic knowledge in theoretical computer science

### Organizatio

Time, Location, Web

Lecturers

Exercises

#### Course goals





#### Organization

Time, Location,

Lecturers

Exercises

#### Course goals

Literature

### Exercise assignments

- handed out on Wednesdays
- due on Wednesday in the following week (before the lecture)
- may be solved in groups of two students
- 50 % of reachable points are required for exam admission

### Implement a CSP solver ...

- Implementation tasks are specified on a regular basis (depending on the progress of the lecture)
- Programming language
- Implementation should compile on a standard Linux computer (Ubuntu 13.08)
- We provide git repositories for source code
- Working solver is prerequisite for exam admission
- We will do a competition between solvers at the end of the lecture

29/34

Introduction

#### Organization

Time, Location,

Lecturers

Exercises

#### Course goals





#### Organization

Time, Location, Web

. . .

Lecturers

Exercises

#### Course goals

Literature

### Credit points

6 ECTS points

### Exams

(Oral or written) exam in February/March 2015

Topics of theses resulting from this lecture:

- Räumliche und zeitliche Constraints in beschreibungslogischen Wissensbasen
- Tableaux-Verfahren zur Lösung qualitativer CSPs
- Revisionsoperationen auf qualitativen Constraintnetzen
- Berechnung handhabbarer Klassen für qualitative räumliche Formalismen
- Fast procedures for the combination of qualitative constraint calculi



31/34

Introduction

#### Organization

Time, Location, Web

Lecturers

Exercises

#### Course goals



Time, Location,

#### Course goals

Topics of projects related to this lecture:

- Ein Schwierigkeitsmaß für Sudoku-Puzzles
- Empirische Analyse von Konsistenz- und Suchalgorithmen
- Umsetzung eines CSP-Methoden-basierten Timetabling Algorithmus



#### Organization

Time, Location,

Lecturers

Exercises

#### Course goals

Literature

Lecture is based on slidesets of previous CSP lectures:

- Malte Helmert and Stefan Wölfl (summer term 2007)
- Bernhard Nebel and Stefan Wölfl (winter term 2009/10)
- Julien Hué and Stefan Wölfl (summer term 2012)

Special thanks to: Matthias Westphal, Robert Mattmüller, Gabriele Röger, Manuel Bodirsky

## Further readings will be given during the lecture.

October 20, 2014 Wölfl, Nebel and Becker-Asano – Constraint Satisfaction Problems

### Literature

- Rina Dechter: *Constraint Processing*, Morgan Kaufmann, 2003.
- Francesca Rossi, Peter van Beek, and Toby Walsh: Handbook of Constraint Programming, Elsevier, 2006.
- Wikipedia contributors: Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/
- Wolfram Research:

Wolfram MathWorld,

http://mathworld.wolfram.com/

# FRE

#### Organization

Time, Location,

Web

Lecturers

Exercises

Course goa

Literature

34/34