Principles of AI Planning

Prof. Dr. B. Nebel, Dr. R. Mattmüller D. Speck Winter Semester 2014/2015

University of Freiburg Department of Computer Science

Exercise Sheet 5 Due: Friday, November 28th, 2014

Exercise 5.1 (Domination lemma, 3 points)

Let $s, s' : A \to \{0, 1\}$ be valuations for a set A of state variables and let χ be a negation-free formula over A. Show by structural induction on χ : If $s \models \chi$ and s' dominates s, then $s' \models \chi$.

Exercise 5.2 (Delete relaxation, 1+2 points) Consider the planning task $\Pi = \langle A, I, O, \gamma \rangle$ in positive normal form with

- (a) Give the relaxation Π^+ of Π .
- (b) Give a sequence π of operators (as short as possible) from O such that π is not a plan of Π , but π^+ is a plan of Π^+ .

Exercise 5.3 (h^+ heuristic, 2+2 points)

A 15-puzzle planning task $\Pi = \langle A, I, O, \gamma \rangle$ is given as

$$\begin{array}{lll} A &=& \{empty(p_{i,j}) \mid 0 \leq i, j \leq 3\} \cup \{at(t_k, p_{i,j}) \mid 0 \leq i, j \leq 3, 0 \leq k \leq 14\} \\ O &=& \{move(t_m, p_{i,j}, p_{k,l}) \mid 0 \leq i, j, k, l \leq 3, 0 \leq m \leq 14, \\ & (i = k \text{ and } |j - l| = 1) \text{ or } (j = l \text{ and } |i - k| = 1)\}, \\ \gamma &=& \bigwedge_{0 \leq m \leq 14} at(t_m, p_{\lfloor m/4 \rfloor, m\%4}) \end{array}$$

Action $move(t_m, p_{i,j}, p_{k,l})$ moves tile t_m from position $p_{i,j}$ to position $p_{k,l}$:

$$move(t_m, p_{i,j}, p_{k,l}) = \langle at(t_m, p_{i,j}) \land empty(p_{k,l}), \\ at(t_m, p_{k,l}) \land empty(p_{i,j}) \land \neg at(t_m, p_{i,j}) \land \neg empty(p_{k,l}) \rangle$$

A syntactically possible state is *legal* if each tile t_m is at some position p_{ij} , if no two tiles are at the same position and if the remaining position is the only one that is *empty*. The initial state is an arbitrary state that is legal.

One possible heuristic for the 15-puzzle is the Manhattan-distance heuristic $h^{Manhattan}$: It sums the Manhattan distances of all tiles from their current positions to their target positions, where the Manhattan distance between position $p_{i,j}$ and $p_{k,l}$ is given as |i-k| + |j-l|.

The h^+ heuristic estimates the distance of state s to the closest goal state as the length of the optimal plan in the relaxed planning task (with initial state s).

- (a) Show that h⁺(s) ≥ h^{Manhattan}(s) for each legal state s of a 15-puzzle planning task.
 (b) Show that h⁺(s) > h^{Manhattan}(s) for at least one state s of a 15-puzzle planning task.

You can and should solve the exercise sheets in groups of two. Please state both names on your solution.