Principles of Knowledge Representation and Reasoning

Semantic Networks and Description Logics II: Description Logics – Terminology and Notation

Albert-Ludwigs-Universität Freiburg

JNI

Bernhard Nebel, Stefan Wölfl, and Julien Hué January 29, 2014

Motivation

- Main problem with semantic networks and frames ... the lack of formal semantics!
- Disadvantage of simple inheritance networks
- ... concepts are atomic and do not have any structure
- → Brachman's structural inheritance networks (1977)

Introducti

Motivation

Motivation

Systems and Applications Description Logics

Concepts and Roles

TBox and ABox

Reasoning Services

Outlook

Literature

Appendix

4/36

1 Introduction

- Motivation
- History
- Systems and Applications
- Description Logics in a Nutshell

Introduction

Motivation

Systems and

Applications
Description Logics

Concepts and Roles

TBox and ABox

Reasoning

Services Outlook

Literature

Appendix

January 29, 2014 Nebel, W

Structural inheritance networks

andary 20, 20 . .

Nebel, Wölfl, Hué – KRR

3 / 36

- Concepts are defined/described using a small set of well-defined operators
- Distinction between conceptual and object-related knowledge
- Computation of subconcept relation and of instance relation
- Strict inheritance (of the entire structure of a concept): inherited properties cannot be overriden

Introductio

Introductio

History

Systems and Applications Description Logics

Concepts and Roles

TBox and ABox

Reasoning

Services

Outlook Literature

Appendix

January 29, 2014 Nebel, Wölfl, Hué – KRR 5 / 36

January 29, 2014 Nebel, Wölfl, Hué – KRR

January 29

Systems and applications

NE NE

BURG

Systems:

■ KL-ONE: First implementation of the ideas (1978)

■ then: NIKL, KL-TWO, KRYPTON, KANDOR, CLASSIC, BACK, KRIS, YAK, CRACK ...

- later: FaCT, DLP, RACER 1998
- currently: FaCT++, RACER, Pellet.

Applications:

- First, natural language understanding systems,
- then configuration systems,
- and information systems,
- currently, it is one tool for the Semantic Web
- Languages: DAML+OIL, now OWL (Web Ontology Language)

Systems and

Description Logic

Concepts and Roles

TBox and ABox

Reasoning Services

Literature

Appendix

Motivation

Systems and

and Roles

TBox and ABox

Reasoning

Outlook

Literature

Appendix

Description Logics in a Nutshell

January 29, 2014

Nebel, Wölfl, Hué - KRR

6/36

Description logics

- Previously also known as KL-ONE-alike languages, frame-based languages, terminological logics, concept languages
- Description Logics (DL) allow us
 - to describe concepts using complex descriptions,
 - to introduce the terminology of an application and to structure it (TBox),
 - to introduce objects and relate them to the introduced terminology (ABox),
 - and to reason about the terminology and the objects.

Systems and

Description Logics

and Roles TBox and

ABox Reasoning

> Services Outlook

Literature

Appendix

Nebel, Wölfl, Hué - KRR 7 / 36 January 29, 2014

Informal example

Male is: the opposite of female A human is a kind of: living entity

A woman is: a human and a female A man is: a human and a male

A mother is: a woman with at least one child that is a human A father is: a man with at least one child that is a human

A parent is: a mother or a father

A grandmother is: a woman, with at least one child that is a parent

A mother-wod is: a mother with only male children

Elizabeth is a woman

Elizabeth has the child Possible Questions:

Charles Is a grandmother a parent?

Charles is a man Is Diana a parent? Diana is a mother-wod Is William a man?

Diana has the child William Is Elizabeth a mother-wod?

January 29, 2014 Nebel, Wölfl, Hué - KRR

2 Concepts and Roles

Concept Forming Operators

Role Forming Operators

Concents and Roles

Operators

TBox and ABox

Services

Appendix

January 29, 2014 Nebel, Wölfl, Hué - KRR 10 / 36

Atomic concepts and roles

- - NE NE

Concept names:

- E.g., Grandmother, Male, ... (in the following usually capitalized)
- We will use symbols such as $A, A_1, ...$ for concept names
- **Semantics:** Monadic predicates $A(\cdot)$ or set-theoretically a subset of the universe $A^{\mathcal{I}} \subseteq \mathcal{D}$.

Role names:

- In our example, e.g., child. Often we will use names such as has-child or something similar (in the following usually lowercase).
- Role names are disjoint from concept names
- \blacksquare Symbolically: t, t_1, \dots
- Semantics: Binary relations $t(\cdot, \cdot)$ or set-theoretically $t^{\mathcal{I}} \subseteq \mathcal{D} \times \mathcal{D}$.

Concepts

TBox and ABox

Reasoning

Outlook

Literature

January 29, 2014

Nebel, Wölfl, Hué - KRR

11 / 36

Boolean operators

- Syntax: let C and D be concept descriptions, then the following are also concept descriptions:
 - \blacksquare $C \sqcap D$ (concept conjunction)
 - \blacksquare $C \sqcup D$ (concept disjunction)
 - $\blacksquare \neg C$ (concept negation)
- Examples:
 - Human □ Female
 - Father ⊔ Mother
 - ¬ Female
- FOL semantics: $C(x) \land D(x)$, $C(x) \lor D(x)$, $\neg C(x)$
- Set semantics: $C^{\mathcal{I}} \cap D^{\mathcal{I}}$, $C^{\mathcal{I}} \cup D^{\mathcal{I}}$, $\mathcal{D} \setminus C^{\mathcal{I}}$

and Roles

Appendix

and Roles

TBox and

Literature

Appendix

13 / 36

ABox

Role restrictions

January 29, 2014

descriptions

Set semantics:

description logic!

- Motivation:
 - Often we want to describe something by restricting the possible "fillers" of a role, e.g. Mother-wod.
 - Sometimes we want to say that there is at least a filler of a particular type, e.g. Grandmother
- Idea: Use quantifiers that range over the role-fillers
 - Mother | ∀has-child.Man
 - Woman □ ∃has-child.Parent
- FOL semantics:

$$(\exists r.C)(x) = \exists y (r(x,y) \land C(y))$$
$$(\forall r.C)(x) = \forall y (r(x,y) \rightarrow C(y))$$

Set semantics:

January 29, 2014

 $(\exists r.C)^{\mathcal{I}} = \{ d \in \mathcal{D} : \text{ there ex. some } e \text{ s.t. } (d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}} \}$ $(\forall r.C)^{\mathcal{I}} = \{ d \in \mathcal{D} : \text{ for each } e \text{ with } (d,e) \in r^{\mathcal{I}}, e \in C^{\mathcal{I}} \}$

Concept and role description

■ From (atomic) concept and role names, complex concept

■ Symbolically: *C* for concept descriptions and *r* for role

Which particular constructs are available depends on the chosen

■ FOL semantics: A concept description C corresponds to a

Similarly with role descriptions r: they correspond to

 $\mathcal{C}^{\mathcal{I}} = \{ d \in \mathcal{D} : \mathcal{C}(d) \text{ "is true in" } \mathcal{I} \}$

 $r^{\mathcal{I}} = \{(d,e) \in \mathcal{D}^2 : r(d,e) \text{ "is true in" } \mathcal{I}\}$

and role descriptions can be created

formula C(x) with the free variable x.

formulae r(x, y) with free variables x, y.

■ In our example, e.g., "Human and Female."

Concents and Roles

TBox and ABox

Services

Outlook

Appendix

TBox and ABox

Services

Appendix

January 29, 2014 Nebel, Wölfl, Hué - KRR

Cardinality restriction

- Cultis: britis
 - UNI FREIBURG

and Roles

TBox and

Services

Literature

Appendix

ABox

Concept Forming Operators

- Motivation:
 - Often we want to describe something by restricting the number of possible "fillers" of a role, e.g., a Mother with at least 3 children or at most 2 children.
- Idea: We restrict the cardinality of the role filler sets:
 - Mother $\square \ge 3$ has-child
 - Mother □ < 2 has-child
- FOL semantics:

$$(\geq n r)(x) = \exists y_1 \dots y_n (r(x, y_1) \wedge \dots \wedge r(x, y_n) \wedge y_1 \neq y_2 \wedge \dots \wedge y_{n-1} \neq y_n)$$
$$(\leq n r)(x) = \neg(\geq n+1 r)(x)$$

Set semantics:

$$(\geq n \, r)^{\mathcal{I}} = \left\{ d \in \mathcal{D} : \left| \left\{ e \in \mathcal{D} : r^{\mathcal{I}}(d, e) \right\} \right| \geq n \right\}$$
$$(\leq n \, r)^{\mathcal{I}} = \mathcal{D} \setminus (\geq n + 1 \, r)^{\mathcal{I}}$$

January 29, 2014

Nebel, Wölfl, Hué – KRR

15 / 36

Inverse roles

- Motivation:
 - How can we describe the concept "children of rich parents"?
- Idea: Define the "inverse" role for a given role (the converse relation)
 - has-child⁻¹
- Example: ∃has-child⁻¹.Rich
- FOL semantics:

$$r^{-1}(x,y) = r(y,x)$$

Set semantics:

$$(r^{-1})^{\mathcal{I}} = \{(d,e) \in \mathcal{D}^2 : (e,d) \in r^{\mathcal{I}}\}$$

January 29, 2014

Nebel, Wölfl, Hué - KRF

16 / 36

Role composition

17 / 36

- Motivation:
 - How can we define the role has-grandchild given the role has-child?
- Idea: Compose roles (as one can compose binary relations)
 - has-child o has-child
- FOL semantics:

$$(r \circ s)(x,y) = \exists z(r(x,z) \land s(z,y))$$

Set semantics:

January 29, 2014

$$(r \circ s)^{\mathcal{I}} = \{(d,e) \in \mathcal{D}^2 : \exists f \text{ s.t. } (d,f) \in r^{\mathcal{I}} \land (f,e) \in s^{\mathcal{I}}\}$$

Nebel, Wölfl, Hué - KRR

Introduction

Concepts and Roles

Concept Forming Operators Role Forming Operators

TBox and ABox

Reasoning Services

Outlook

Literature

Appendix

Role value maps

- Motivation:
 - How do we express the concept "women who know all the friends of their children"
- Idea: Relate role filler sets to each other
 - \blacksquare Woman \sqcap (has-child \circ has-friend \sqsubseteq knows)
- FOL semantics:

$$(r \sqsubseteq s)(x) = \forall y (r(x,y) \rightarrow s(x,y))$$

■ Set semantics: Let $r^{\mathcal{I}}(d) = \{e : r^{\mathcal{I}}(d,e)\}.$

$$(r \sqsubseteq s)^{\mathcal{I}} = \{d \in \mathcal{D} : r^{\mathcal{I}}(d) \subseteq s^{\mathcal{I}}(d)\}$$

Note: Role value maps lead to undecidability of satisfiability testing of concept descriptions!

January 29, 2014 Nebel, Wölfl, Hué – KRR

and Roles

Role Forming

TBox and

Services

Literature

Appendix

ABox

Concepts and Roles

Operators
Role Forming

TBox and ABox

Reasoning Services

Outlook

Literature

Appendix

3 TBox and ABox

■ Terminology Box

Assertional Box

Example

- Name of the state of the state
 - UNI
 - Introduction
 - Concepts and Roles

TBox and ABox

Terminology Box
Assertional Box

Reasoning Services

Outlook

Literature

Appendix

January 29, 2014

Nebel, Wölfl, Hué - KRR

20 / 36

Terminology box

Introduction

ABox

Concepts and Roles

TBox and

Terminology Box

Assertional Box

Reasoning

Services

Outlook Literature

Appendix

 $A \sqsubseteq D$ no cyclic definitions (even not indirectly), such as $A \doteq \forall r . B$,

where *A* is a concept name and *C* is a concept description.

 \blacksquare no multiple definitions of the same symbol such as $A \doteq C$,

A terminology or TBox is a finite set of such axioms with the

■ In order to introduce new terms, we use two kinds of

 $B \doteq \exists s. A$

terminological axioms:

following additional restrictions:

 $A \doteq C$

 $\blacksquare A \sqsubset C$

January 29, 2014

Nebel, Wölfl, Hué - KRR

TBoxes: semantics

- TBoxes restrict the set of possible interpretations.
- FOL semantics:
 - $A \doteq C$ corresponds to $\forall x (A(x) \leftrightarrow C(x))$
 - $A \sqsubseteq C$ corresponds to $\forall x (A(x) \rightarrow C(x))$
- Set semantics:
 - $lacksquare A \doteq C$ corresponds to $A^{\mathcal{I}} = C^{\mathcal{I}}$
 - $lacksquare A \sqsubseteq C$ corresponds to $A^\mathcal{I} \subseteq C^\mathcal{I}$
- Non-empty interpretations which satisfy all terminological axioms are called models of the TBox.

Introduction

Concepts and Roles

TBox and ABox

Terminology Box Assertional Box

Reasoning Services

Outlook

Literature

Appendix

Assertional box

- In order to state something about objects in the world, we use two forms of assertions:
 - a: C ■ (a,b): r

where *a* and *b* are individual names (e.g., ELIZABETH, PHILIP), *C* is a concept description, and *r* is a role description.

An ABox is a finite set of assertions.

Introduction

Concepts and Roles

TBox and ABox

Terminology Box

Reasoning

Services

Outlook Literature

Annondiv

Appendix

January 29, 2014 Nebel, Wölfl, Hué – KRR 22 / 36

January 29, 2014 Nebel, Wölfl, Hué – KRR

ABoxes: semantics

- Individual names are interpreted as elements of the universe under the unique-name-assumption, i.e., different names refer to different objects.
- Assertions express that an object is an instance of a concept or that two objects are related by a role.
- FOL semantics:
 - \blacksquare a: C corresponds to C(a) \blacksquare (a,b): r corresponds to r(a,b)
- Set semantics:
 - $\mathbf{m} \ \mathbf{a}^{\mathcal{I}} \in \mathbf{D}$
 - a : C corresponds to $a^{\mathcal{I}} \in C^{\mathcal{I}}$
 - \blacksquare (a,b): r corresponds to $(a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}}$
- Models of an ABox and of ABox + TBox can be defined analogously to models of a TBox.

January 29, 2014

Nebel, Wölfl, Hué - KRR

24 / 36

UNI FREIBURG

and Roles

TBox and

Assertional Box

Services

Outlook

Literature

Appendix

ABox

Example TBox

and Roles

TBox and

ABox Terminology Box Assertional Box

Reasoning Services

Outlook

Literature Appendix

 $\mathtt{Male} \; \doteq \; \neg \mathtt{Female}$

Human □ Living_entity

Woman \doteq Human \sqcap Female $\operatorname{Man} \doteq \operatorname{Human} \sqcap \operatorname{Male}$

Mother \doteq Woman $\sqcap \exists$ has-child.Human

Father

in Man □ ∃has-child.Human

Parent \doteq Father \sqcup Mother

Grandmother \doteq Woman $\sqcap \exists$ has-child.Parent Mother-without-daughter \doteq Mother $\sqcap \forall$ has-child.Male

Mother-with-many-children \doteq Mother \sqcap (\geq 3has-child)

January 29, 2014

Nebel, Wölfl, Hué - KRR

Example ABox

UNI FREIBURG

DIANA: Woman

ELIZABETH: Woman

EDWARD: Man ANDREW: Man

Man

CHARLES:

DIANA: Mother-without-daughter (ELIZABETH, CHARLES): has-child (ELIZABETH, EDWARD): has-child (ELIZABETH, ANDREW): has-child (DIANA, WILLIAM): has-child (CHARLES, WILLIAM): has-child

and Roles

TBox and ABox

Assertional Box

Reasoning Services

Outlook

Literature

Appendix

4 Reasoning Services

and Roles

TBox and ABox

Reasoning Services

Outlook

Literature

Appendix

January 29, 2014 Nebel, Wölfl, Hué - KRR 28 / 36

January 29, 2014

Nebel, Wölfl, Hué - KRR

26 / 36

Some reasoning services

- UNI FREIBURG
- Does a description C make sense at all, i.e., is it satisfiable? A concept description C is satisfiable, if there exists an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$.
- Is one concept a specialization of another one, is it subsumed?

C is subsumed by *D* (in symbols $C \sqsubseteq D$) if we have for all interpretations $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

- Is a an instance of a concept C? a is an instance of C if for all interpretations, we have $a^{\mathcal{I}} \in C^{\mathcal{I}}$.
- *Note*: These questions can be posed with or without a TBox that restricts the possible interpretations.

Introduction

and Roles

TBox and ABox

Reasoning Services

_ . . .

Literature

Appendix

January 29, 2014

Nebel, Wölfl, Hué - KRR

29 / 36

5 Outlook

31 / 36

33 / 36

Introduction

and Roles

TBox and ABox

Reasoning Services

Outlook

iterature

Appendix

January 29, 2014 Nebel, Wölfl, Hué – KRR

Outlook

- I STATE OF THE STA
- Can we reduce the reasoning services to perhaps just one problem?
- What could be reasoning algorithms?
- What can we say about complexity and decidability?
- What has all that to do with modal logics?
- How can one build efficient systems?

Introduction

and Roles

TBox and ABox

Reasoning Services

Outlook

Literature

Appendix

Literature I

Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.

The Description Logic Handbook: Theory, Implementation, Applications,

Cambridge University Press, Cambridge, UK, 2003.

Ronald J. Brachman and James G. Schmolze.

An overview of the KL-ONE knowledge representation system. **Cognitive Science**, 9(2):171–216, April 1985.

Franz Baader, Hans-Jürgen Bürckert, Jochen Heinsohn, Bernhard Hollunder, Jürgen Müller, Bernhard Nebel, Werner Nutt, and Hans-Jürgen Profitlich.

Terminological Knowledge Representation: A proposal for a terminological logic.

Published in Proc. International Workshop on Terminological Logics, 1991, DFKI Document D-91-13.

January 29, 2014 Nebel, Wölfl, Hué – KRR

Concepts

UNI FREIBURG

and Roles

ABox

Reasoning Services

Outlook

Literature

Appendix

January 29, 2014 Nebel, Wölfl, Hué – KRR 32 / 36

Literature II

Introduction

Concepts and Roles

TBox and ABox

Reasoning Services

Outlook

Literature

Appendix

Bernhard Nebel.

Reasoning and Revision in Hybrid Representation Systems.

Lecture Notes in Artificial Intelligence 422. Springer-Verlag, Berlin, Heidelberg, New York, 1990.

January 29, 2014

Nebel, Wölfl, Hué - KRR

34 / 36

Summary: Role descriptions

Introduction

Concepts and Roles

TBox and ABox

Reasoning Services

Outlook

Literature

Appendix

Abstract	Concrete	Interpretation
Austract	Concrete	Interpretation
t	t	$t^{\mathcal{I}}$
f	f	$f^{\mathcal{I}},$ (functional role)
$r\sqcap s$	(and <i>r s</i>)	$r^{\mathcal{I}}\cap s^{\mathcal{I}}$
$r \sqcup s$	(or <i>r s</i>)	$\mathit{r}^{\mathcal{I}} \cup \mathit{s}^{\mathcal{I}}$
$\neg r$	(not <i>r</i>)	$\mathcal{D} \times \mathcal{D} - r^{\mathcal{I}}$
r^{-1}	(inverse r)	$\left\{ \left(d,d^{\prime} ight) :\left(d^{\prime},d ight) \in r^{\mathcal{I}} ight\}$
$r _{C}$ r^{+}	(restr r C)	$\left\{ (d,d') \in r^{\mathcal{I}} : d' \in C^{\mathcal{I}} \right\}$
r^+	(trans r)	$(r^{\mathcal{I}})^+$
$r \circ s$	(compose r s)	$r^{\mathcal{I}} \circ s^{\mathcal{I}}$
1	self	$\{(d,d):d\in\mathcal{D}\}$

January 29, 2014 Nebel, Wölfl, Hué - KRR 36 / 36

Summary: Concept descriptions

				30-	ш
	Abstract	Concrete	Interpretation	Z	2
	A	Α	$A^{\mathcal{I}}$	- =	Щ
	$C\sqcap D$	(and <i>C D</i>)	$\mathcal{C}^\mathcal{I}\cap \mathcal{D}^\mathcal{I}$		Introduction
	$C \sqcup D$	(or <i>C D</i>)	$\mathcal{C}^\mathcal{I} \cup \mathcal{D}^\mathcal{I}$		Concepts and Roles
	$\neg C$	(not <i>C</i>)	$\mathcal{D} - \mathcal{C}^{\mathcal{I}}$		
	$\forall r.C$	(all <i>r C</i>)	$\left\{ oldsymbol{d} \in \mathcal{D} : oldsymbol{r}^{\mathcal{I}}(oldsymbol{d}) \subseteq oldsymbol{C}^{\mathcal{I}} ight\}$		TBox and ABox
	$\exists r$	(some r)	$\left\{ \mathbf{d} \in \mathcal{D} : r^{\mathcal{I}}(\mathbf{d}) \neq \emptyset \right\}$		Reasoning
	$\geq n r$	(atleast $n r$)	$\left\{d\in\mathcal{D}:\left r^{\mathcal{I}}(d)\right \geq n\right\}$		Services
	$\leq n r$	(atmost n r)	$\left\{d\in\mathcal{D}:\left r^{\mathcal{I}}(d)\right \leq n\right\}$		Outlook
	∃ <i>r</i> . <i>C</i>	(some r C)	$\left\{ oldsymbol{d} \in \mathcal{D} : oldsymbol{r}^{\mathcal{I}}(oldsymbol{d}) \cap oldsymbol{C}^{\mathcal{I}} eq oldsymbol{\emptyset} ight\}$		Literature
	$\geq n r.C$	(atleast n r C)	$\left\{ oldsymbol{d} \in \mathcal{D} : r^{\mathcal{I}}(oldsymbol{d}) \cap oldsymbol{\mathcal{C}}^{\mathcal{I}} \geq n ight\}$		Appendix
	$\leq n r.C$	(atmost n r C)	$\left\{ oldsymbol{d} \in \mathcal{D} : r^{\mathcal{I}}(oldsymbol{d}) \cap oldsymbol{\mathcal{C}}^{\mathcal{I}} \leq n ight\}$		
	$r \stackrel{\cdot}{=} s$	(eq <i>r s</i>)	$\left\{ oldsymbol{d} \in \mathcal{D} : oldsymbol{r}^{\mathcal{I}}(oldsymbol{d}) = oldsymbol{s}^{\mathcal{I}}(oldsymbol{d}) ight\}$		
	$r \neq s$	(neq <i>r s</i>)	$\left\{d \in \mathcal{D} : r^{\mathcal{I}}(d) \neq s^{\mathcal{I}}(d)\right\}$		
	$r \sqsubseteq s$	(subset r s)	$\left\{d\in\mathcal{D}:r^{\mathcal{I}}(d)\subseteq s^{\mathcal{I}}(d)\right\}$		
	$g\stackrel{\cdot}{=} h$	(eq <i>g h</i>)	$\left\{d\in\mathcal{D}:g^{\mathcal{I}}(d)=h^{\mathcal{I}}(d) eq\emptyset ight\}$		
	$g \neq h$	(neq g h)	$\left\{d \in \mathcal{D} : \emptyset \neq g^{\mathcal{I}}(d) \neq h^{\mathcal{I}}(d) \neq \emptyset\right\}$		
	$\{i_1,i_2,\dots,i_n\}$	(oneof $i_1 \dots i_n$)	$\{i_1^{\mathcal{I}}, i_2^{\mathcal{I}}, \dots, i_n^{\mathcal{I}}\}$		
Janua	ry 29, 2014	Nebel, V	Völfl, Hué – KRR	35 / 36	