
Principles of Knowledge Representation and Reasoning

Winter Semester 2013/2014
University of Freiburg

Department of Computer Science

Exercise Sheet 4
Due: November 20th, 2013

Exercise 4.1 (Project: Handling Propositional Formulae, 1+3+2+4)

The aim of this exercise is to write a small program that parses propositional
logic formulae, translates them to CNF, and decides their satisfiability by using
an existing satisfiability solver. You can use any programming language you
like (given that it is usable under Ubuntu 12). It must includes a makefile for
compilation.
Source code must be submitted to: hue@informatik.uni-freiburg.de.
We restrict ourselves to postfix notation1 to keep parsing of the formula sim-
ple. In these formulae propositional variables are written as (non-zero) positive
integer numbers. Only the following propositional connectives are used: not

(unary), or (binary), and (binary). After parsing, a formula is internally repre-
sented as a binary tree (Figure 1 gives an example) and must be converted to
CNF.

¬

∧

1 ∨

2 ¬

3

Postfix notation: 3 not 2 or 1 and not

Formula: ¬
(
1 ∧ (2 ∨ ¬3)

)
NNF: ¬1 ∨ (¬2 ∧ 3)

CNF: (¬1 ∨ ¬2) ∧ (¬1 ∨ 3)

Figure 1: Example for postfix notation, formula, CNF, binary tree.

We consider both the standard CNF translation given in the lecture as well
as the labeling CNF conversion which is a polynomial CNF conversion that
preserves satisfiability. This conversion is achieved from the NNF by labeling
every non-trivial subformulas with a new variable.
If b is a new variable the subformula and l1, ..., ln the literals in the formula.
The encodings are:

• (l1 ∨ l2)↔ b is encoded into (¬l1 ∨ b) ∧ (¬l2 ∨ b) ∧ (l1 ∨ l2 ∨ ¬b)

• (l1 ∧ l2)↔ b is encoded into (l1 ∨ ¬b) ∧ (l2 ∨ ¬b) ∧ (¬l1 ∨ ¬l2 ∨ b)

If we consider the example above, we denote by b1 the formula ¬1 ∨ (¬2 ∧ 3)
and b2 the formula ¬2∧ 3. We have as a translation: b1∧ (b1 ∨ 1)∧ (b1 ∨¬b2)∧
(¬1 ∨ b2 ∨ ¬b1)∧ (¬2 ∨ b2) ∧ (3 ∨ b2) ∧ (1 ∨ ¬3 ∨ b2).
More explanations can be found on http://eprints.biblio.unitn.it/1573/

1/A_SAT-based_tool_for_solving_configuration_problems.pdf

1 http://en.wikipedia.org/wiki/Postfix_notation

http://eprints.biblio.unitn.it/1573/1/A_SAT-based_tool_for_solving_configuration_problems.pdf
http://eprints.biblio.unitn.it/1573/1/A_SAT-based_tool_for_solving_configuration_problems.pdf
http://en.wikipedia.org/wiki/Postfix_notation


For evaluating CNF formulae you can use an existing propositional satisfiability
solver (SAT solver), e.g., the MiniSat solver http://minisat.se/. Virtually
all SAT solvers accept as input the simple DIMACS format:

p cnf 5 2

1 -2 3 0

-1 2 5 4 0

The first line specifies that it is a CNF problem (p cnf) and gives the number
of variables and clauses (in this case 5 variables; atoms 1, . . . , 5 and 2 clauses).
Each of the following lines specifies one clause: positive integers represent posi-
tive literals, negative integers represent negative literals with 0 terminating the
clause/line.

(a) Write a parser for the given postfix format that generates a binary tree
for a given formula (or use the one provided for the java language).

(b) Write a function to convert an arbitrary formula to CNF both using the
standard binary tree representation and the labeling CNF conversion.

(c) Write a function which can generate random 3-DNFs. The function must
take as input: the number of conjunctions and the number of variables.

(d) Write a function to output the CNF in DIMACS format and test the
satisfiability of randomly generated DNFs by converting them in CNF
then in DIMACS. Discuss the efficciency of the two translations.

Your program should take as argument one filename to read the formula from
and output the CNF in DIMACS on the standard output. It should not write
anything else than the DIMACS format in order to pipe it as a minisat’s input.

http://minisat.se/

