Principles of AI Planning 19. Expressive power

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

February 12th, 2014

Motivation

Why? Examples

Propositional STRIPS and Variants

Expressive Power

Summary

Motivation

Motivation: Why Analyzing the Expressive Power?

- Expressive power is the motivation for designing new planning languages
- Often there is the question: Syntactic sugar or essential feature?
- ~> Compiling away or change planning algorithm?
- $\rightarrow\,$ If a feature can be compiled away, then it is apparently only syntactic sugar.
 - Sometimes, however, a compilation can lead to much larger planning domain descriptions or to much longer plans.
- This means the planning algorithm will probably choke,
 i.e., it cannot be considered as a compilation

Motivation

BURG

Why? Examples

Propositional STRIPS and Variants

Expressive Power

Example: DNF Preconditions

- Assume we have DNF preconditions in STRIPS operators
- This can be compiled away as follows
- Split each operator with a DNF precondition $c_1 \lor \ldots \lor c_n$ into *n* operators with the same effects and c_i as preconditions
- If there exists a plan for the original planning task there is one for the new planning task and vice versa
- ightarrow The planning task has almost the same size
- ightarrow The shortest plans have the same size

Motivation

Why?

Examples

Propositional STRIPS and Variants

Expressive Power

Example: Conditional effects

- Can we compile away conditional effects to STRIPS?
- Example operator: $\langle a, b \triangleright d \land \neg c \triangleright e \rangle$
- Can be translated into four operators: $\langle a \land b \land c, d \rangle, \langle a \land b \land \neg c, d \land e \rangle, \ldots$
- Plan existence and plan size are identical
- Exponential blowup of domain description!
- ightarrow Can this be avoided?

Motivation

Why?

Examples

Propositional STRIPS and Variants

Expressive Power

Motivation

Propositional STRIPS and Variants

Disjunctive Preconditions: Difficult or Easy?

STRIPS Variants

Partially Ordered STRIPS Variants

Computational Complexity

Expressive Power

Summary

Propositional STRIPS and Variants

Propositional STRIPS and Variants

- In the following we will only consider propositional STRIPS and some variants of it.
- Planning task:

$$\mathscr{T} = \langle A, I, O, G \rangle.$$

• Often we refer to domain structures $\mathscr{D} = \langle A, O \rangle$.

Motivation

JRG

8

Propositional STRIPS and Variants

Disjunctive Preconditions: Difficult or Easy?

Partially Ordered STRIPS Variants

Computational Complexity

Expressive Power

Disjunctive Preconditions: Trivial or Essential?

- Kambhampati et al [ECP 97] and Gazen & Knoblock
 [ECP 97]: Disjunctive preconditions are trivial since they can be translated to basic STRIPS (DNF-preconditions)
- Bäckström [AIJ 95]: Disjunctive preconditions are probably essential – since they can not easily be translated to basic STRIPS (CNF-preconditions)
- Anderson et al [AIPS 98]: "[D]isjunctive preconditions … are … essential prerequisites for handling conditional effects" → conditional effects imply disjunctive preconditions (?) (General Boolean preconditions)

Motivation

Propositional STRIPS and Variants

Disjunctive Preconditions: Difficult or Easy?

STRIPS Variants

Partially Ordered STRIPS Variants

Computational Complexity

Expressive Power

More "Expressive Power"

Motivation

Propositional STRIPS and Variants

Disjunctive Preconditions: Difficult or Easy?

STRIPS Variants

Partially Ordered STRIPS Variants

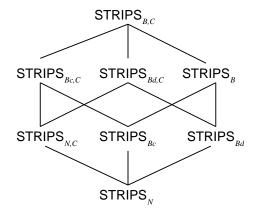
Computational Complexity

Expressive Power

Summary

 $\begin{array}{l} {\sf STRIPS}_N \ : \ {\sf plain \ strips \ with \ negative \ literals} \\ {\sf STRIPS}_{Bd} \ : \ {\sf precondition \ in \ disjunctive \ normal \ form} \\ {\sf STRIPS}_{Bc} \ : \ {\sf precondition \ in \ conjunctive \ normal \ form} \\ {\sf STRIPS}_B \ : \ {\sf Boolean \ expressions \ as \ preconditions} \\ {\sf STRIPS}_C \ : \ {\sf conditional \ effects} \\ {\sf STRIPS}_{C \ N} \ : \ {\sf conditional \ effects \ \& \ negative \ literals} \\ \end{array}$

Ordering Planning Formalisms Partially



Motivation

BURG

Propositional STRIPS and Variants

Disjunctive Preconditions: Difficult or Easy?

Partially Ordered STRIPS Variants

Computational Complexity

Expressive Power

Computational Complexity ...

Motivation

Propositional STRIPS and Variants

Disjunctive Preconditions: Difficult or Easy? STRIPS Variants

Partially Ordered STRIPS Variants

Computational Complexity

Expressive Power

Summary

Theorem

PLANEX is PSPACE-complete for $STRIPS_{N}$, $STRIPS_{C,B}$, and for all formalisms "between" the two.

Proof.

Follows from theorems proved in the previous lecture.

UNI FREIBURG

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power Compilation Schemes Compilability Positive Results Negative Results Circuit Complexity General Compilability Results

mouvation

Summary

Expressive Power

Measuring Expressive Power

Consider mappings between planning problems in different formalisms

- that preserve
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan "structure"
 - the solutions/plans themselves

that are limited

- in the size of the result (poly. size)
- in the computational resources (poly. time

that transform

- entire planning instances
- domain structure and states in isolation

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes Compilability Positive Results

Negative Results

Circuit Complexity

Compilability Besults

Measuring Expressive Power

Consider mappings between planning problems in different formalisms

- that preserve
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan "structure"
 - the solutions/plans themselves

that are limited

- in the size of the result (poly. size)
- in the computational resources (poly. time)

that transform

- entire planning instances
- domain structure and states in isolation

FREIBURG

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes Compilability Positive Results

Negative Results

General

Results

Measuring Expressive Power

Consider mappings between planning problems in different formalisms

- that preserve
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan "structure"
 - the solutions/plans themselves
- that are limited
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)

that transform

- entire planning instances
- domain structure and states in isolation

wouvation

Propositiona STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes Compilability Positive Results

Negative Results

Circuit Complexity

Compilability

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the computational resources (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation

\sim all formalisms have the same expressiveness (?)

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes

Compilability

Positive Results

Negative Hesults

Circuit Complexity

Compilability

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the **computational resources** (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation

\rightsquigarrow all formalisms have the same expressiveness (?)

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

Compilability

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the **computational resources** (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation

\rightsquigarrow all formalisms have the same expressiveness (?)

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes

Compilability

Negative Reculte

Circuit Complexity

General

Results

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the **computational resources** (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation

$\sim \rightarrow$ all formalisms have the **same expressiveness** (?)

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes Compilability

No settine Descrite

Circuit Complexity

General

Compilability Results

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the **size** of the result (poly. size)
- in the computational resources (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation
- However, expressiveness is independent of the computational resources needed to compute the mapping

Motivation

M

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes Compilability Positive Results Negative Result Circuit Complex General

Compilability Results

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the **computational resources** (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation
- However, expressiveness is independent of the computational resources needed to compute the mapping

Motivation

m

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes Compilability Positive Results Negative Results Circuit Complexi

General Compilability

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the **computational resources** (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation

However, expressiveness is independent of the computational resources needed to compute the mapping

Motivation

DRG

m

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes Compilability Positive Results Negative Results

Circuit Complexity

Compilability Results

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the **computational resources** (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation
- However, expressiveness is independent of the computational resources needed to compute the mapping

Motivation

DRD

Ē

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

> Compilation Schemes Compilability Positive Results Negative Results Circuit Complexit General

Compilability Results

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the computational resources (poly. time
- transforming
 - entire planning instances
 - domain structure and states in isolation
- All formalisms are trivially equivalent (because planning is PSPACE-complete for all propositional STRIPS

formalisms

February 12th, 2014

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

Compilability

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the **size** of the result (poly. size)
- in the computational resources (poly. time)
- transforming
 - entire planning instances
 - domain structure and states in isolation
- All formalisms are trivially equivalent (because planning is PSPACE-complete for all propositional STRIPS

formalisms February 12th, 2014

FREIBURG

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes

Compilability

Negative Decemb

Circuit Complexity

General

Results

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the **size** of the result (poly. size)
- in the computational resources (poly. time)
- transforming
 - entire planning instances
 - domain structure and states in isolation
- All formalisms are trivially equivalent (because planning is PSPACE-complete for all propositional STRIPS

formalisms

February 12th, 2014

M

Expressive Power

Measuring Expressive Power

Compilation Schemes Compilability

Negative Results

Circuit Complexity

General Compilability

Results

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the **size** of the result (poly. size)
- in the computational resources (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation

All formalisms are trivially equivalent (because planning is PSPACE-complete for all propositional STRIPS

formalisms)

February 12th, 2014

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

Compilability

When measuring the expressiveness of planning formalisms, domain structures should be considered independently from states

February 12th, 2014

B. Nebel, R. Mattmüller - Al Planning

20 / 38

Method 4: Modular & Polysize Mappings

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the computational resources (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation

FRE

Motivation

DRD

m

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

Compilability

February 12th, 2014

B. Nebel, R. Mattmüller - Al Planning

Method 4: Modular & Polysize Mappings

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the **computational resources** (poly. time)

Propositional STRIPS and

Power

Measuring Expressive Power

When measuring the expressiveness of planning formalisms, domain structures should be considered independently from states

February 12th, 2014

B. Nebel, R. Mattmüller - Al Planning

20/38

Method 4: Modular & Polysize Mappings

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the **size** of the result (poly. size)
- in the computational resources (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation

REIBU

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

Compilabilit

→ When measuring the expressiveness of planning formalisms, domain structures should be considered independently from states February 12th, 2014 B. Nebel, R. Mattmüller – Al Planning

Method 4: Modular & Polysize Mappings

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the **size** of the result (poly. size)
- in the **computational resources** (poly. time)

transforming

- entire planning instances
- domain structure and states in isolation

20/38

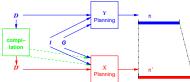
Ž 2

> Propositional STRIPS and

Power

Measuring Expressive Power

- Transform domain structure $\mathscr{D} = \langle A, O \rangle$ (with polynomial blowup) to \mathscr{D}' preserving solution existence
- Only trivial changes to states (independent of operator set)
- Resulting plans π' should ne grow too much (additive constant, linear growth, polynomial growth)
- Similar to knowledge
 compilation, with operators as the fixed part and initial states & goals as the varying part



UNI FREIBURG

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

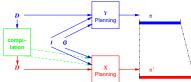
Positive Results

Negative Results

Gircuit Complexity

Compilability

- Transform domain structure $\mathscr{D} = \langle A, O \rangle$ (with polynomial blowup) to \mathscr{D}' preserving solution existence
- Only trivial changes to states (independent of operator set)
- Resulting plans π' should n grow too much (additive constant, linear growth, polynomial growth)
- Similar to knowledge
 compilation, with operators as the fixed part and initial states & goals as the varying part



UNI FREIBURG

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

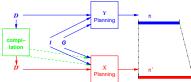
Positive Results

Negative Results

Gircuit Complexity

Compilability

- Transform domain structure $\mathscr{D} = \langle A, O \rangle$ (with polynomial blowup) to \mathscr{D}' preserving solution existence
- Only trivial changes to states (independent of operator set)
- Resulting plans π' should not grow too much (additive constant, linear growth, polynomial growth)
- Similar to knowledge
 compilation, with operators as the fixed part and initial states & goals as the varying part



UNI FREIBURG

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

Compilability

- Transform domain structure $\mathscr{D} = \langle A, O \rangle$ (with polynomial blowup) to \mathscr{D}' preserving solution existence
- Only trivial changes to states (independent of operator set)
- Resulting plans π' should not grow too much (additive constant, linear growth, polynomial growth)
- Similar to knowledge
 compilation, with operators as the fixed part and initial states & goals as the varying part

UNI FREIBURG

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Gircuit Complexity

Compilability

Compilability

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe Compilation

Compilability

Positive Results Negative Results Circuit Complexity General Compilability Results

Summary

Theorem

For all x,y, the relations \leq_v^x are transitive and reflexive.

February 12th, 2014

B. Nebel, R. Mattmüller - Al Planning

 $\mathscr{Y} \preceq \mathscr{X} (\mathscr{Y} \text{ is compilable to } \mathscr{X})$ iff

there exists a compilation scheme from \mathscr{Y} to \mathscr{X} .

Compilability

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results Negative Results Circuit Complexity General Compilability Results

Summary

$\mathscr{Y} \preceq \mathscr{X} \ (\mathscr{Y} \text{ is compilable to } \mathscr{X})$ iff

there exists a compilation scheme from \mathscr{Y} to \mathscr{X} .

- $\mathscr{Y} \preceq^{1} \mathscr{X}$: preserving plan size exactly (modulo additive constants)
- $\mathscr{Y} \leq^{c} \mathscr{X}$: preserving plan size linearly (in $|\pi|$)
- $\mathscr{Y} \preceq^{p} \mathscr{X}$: preserving plan size polynomially (in $|\pi|$ and $|\mathscr{D}|$)
- $\mathscr{Y} \preceq^{x}_{p} \mathscr{X}$: polynomial-time compilability

Theorem

For all *x*,*y*, the relations \leq_{y}^{x} are transitive and reflexive.

February 12th, 2014

Back-Translatability

- Shouldn't we also require that plans in the compiled instance can be translated back to the original formalism?
- Yes, if we want to use this technique, one should require that!
- In all positive cases, there was never any problem to translate the plan back
- For the negative case, it is easier to prove non-existence
- So, in order to prove negative results, we do not need it, for positive it never had been a problem
- So, similarly to the concentration on decision problems when determining complexity, we simplify things here

Motivation

DRG

2

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe Compilation

Compilability

Positive Results Negative Results Circuit Complexity General Compilability Results

A (Trivial) Positive Result: $STRIPS_{Bd} \leq_{\rho}^{1}$ STRIPS_N

DNF preconditions can be "compiled away." Assume operator $o = \langle c, e \rangle$ and

$$c = L_1 \vee \ldots \vee L_k$$

with L_i being a conjunction of literals. Create k operators $o_i = \langle L_i, e \rangle$

- compilation is solution-preserving,
- 2 \mathscr{D}' is only polynomially larger than \mathscr{D} ,
- **3** compilation can be computed in polynomial time,
- resulting plans do not grow at all.
- \rightsquigarrow STRIPS_{Bd} \leq_p^1 STRIPS_N

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results Circuit Complexity

General Compilability Results

A (Trivial) Positive Result: $STRIPS_{Bd} \leq_{\rho}^{1}$ STRIPS_N

DNF preconditions can be "compiled away." Assume operator $o = \langle c, e \rangle$ and

$$c = L_1 \vee \ldots \vee L_k$$

with L_i being a conjunction of literals. Create *k* operators $o_i = \langle L_i, e \rangle$

- compilation is solution-preserving,
- 2 \mathscr{D}' is only polynomially larger than \mathscr{D} ,
- s compilation can be computed in polynomial time,
- resulting plans do not grow at all.
- \rightarrow STRIPS_{Bd} \leq_{p}^{1} STRIPS_N

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results

Canaral

Compilability

A (Trivial) Positive Result: $STRIPS_{Bd} \leq_{\rho}^{1}$ STRIPS_N

DNF preconditions can be "compiled away." Assume operator $o = \langle c, e \rangle$ and

$$c = L_1 \vee \ldots \vee L_k$$

with L_i being a conjunction of literals. Create *k* operators $o_i = \langle L_i, e \rangle$

- compilation is solution-preserving,
- 2 \mathscr{D}' is only polynomially larger than \mathscr{D} ,
- 3 compilation can be computed in polynomial time,
- 4 resulting plans do not grow at all.
- \rightsquigarrow STRIPS_{Bd} \leq_p^1 STRIPS_N

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results

General

Compilability Results

Another Positive Result: $STRIPS_{C,Bc} \leq_{p}^{c}$ STRIPS_{C,N}

CNF preconditions can be "compiled away" – provided we have already conditional effects.

- Evaluate the truth value of all disjunctions appearing in operators by using a special evaluation operator with conditional effects that make new "clause atoms" true
- Alternate between executing original operators (clauses replaced by new atoms) and evaluation operators
- Operator sets grow only polynomially
- \rightsquigarrow Plans are double as long as the original plans

Anderson et al's conjecture holds in a weak version

Motivation

M

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results Circuit Complexity General Compilability Results

Another Positive Result: $STRIPS_{C,Bc} \leq_{p}^{c}$ STRIPS_{C,N}

CNF preconditions can be "compiled away" – provided we have already conditional effects.

- Evaluate the truth value of all disjunctions appearing in operators by using a special evaluation operator with conditional effects that make new "clause atoms" true
- Alternate between executing original operators (clauses replaced by new atoms) and evaluation operators
- Operator sets grow only polynomially
- ~> Plans are double as long as the original plans

Anderson et al's conjecture holds in a weak version

Motivation

> Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results Circuit Complexity General Compilability

Another Positive Result: $STRIPS_{C,Bc} \leq_{p}^{c}$ STRIPS_{C,N}

CNF preconditions can be "compiled away" – provided we have already conditional effects.

- Evaluate the truth value of all disjunctions appearing in operators by using a special evaluation operator with conditional effects that make new "clause atoms" true
- Alternate between executing original operators (clauses replaced by new atoms) and evaluation operators
- → Operator sets grow only **polynomially**
- → Plans are double as long as the original plans

---> Anderson et al's conjecture holds in a weak version

Motivation

> Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results Circuit Complexity General Compilability Results

Another Positive Result: $STRIPS_{C,Bc} \leq_{\rho}^{c}$ STRIPS_{C,N}

CNF preconditions can be "compiled away" – provided we have already conditional effects.

- Evaluate the truth value of all disjunctions appearing in operators by using a special evaluation operator with conditional effects that make new "clause atoms" true
- Alternate between executing original operators (clauses replaced by new atoms) and evaluation operators
- → Operator sets grow only polynomially

→ Plans are double as long as the original plans

Anderson et al's conjecture holds in a weak version

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results Circuit Complexity General Compilability Results

Another Positive Result: $STRIPS_{C,Bc} \leq_{\rho}^{c}$ STRIPS_{C,N}

CNF preconditions can be "compiled away" – provided we have already conditional effects.

- Evaluate the truth value of all disjunctions appearing in operators by using a special evaluation operator with conditional effects that make new "clause atoms" true
- Alternate between executing original operators (clauses replaced by new atoms) and evaluation operators
- → Operator sets grow only polynomially
- ~> Plans are double as long as the original plans

Anderson et al's conjecture holds in a weak version

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results Circuit Complexity General Compilability Results

Another Positive Result: $STRIPS_{C,Bc} \leq_{\rho}^{c}$ STRIPS_{C,N}

CNF preconditions can be "compiled away" – provided we have already conditional effects.

- Evaluate the truth value of all disjunctions appearing in operators by using a special evaluation operator with conditional effects that make new "clause atoms" true
- Alternate between executing original operators (clauses replaced by new atoms) and evaluation operators
- ~> Operator sets grow only polynomially
- ~> Plans are double as long as the original plans

→ Anderson et al's conjecture holds in a weak version

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results Circuit Complexity General Compilability Results

Consider domain \mathcal{D} with only one (STRIPS_{C,B}) operator o:

$$\langle \top, (p_1 \rhd \neg p_1) \land (\neg p_1 \rhd p_1) \land \ldots \land (p_k \rhd \neg p_k) \land (\neg p_k \rhd p_k) \rangle,$$

which "inverts" a given state. For all (I, G) with

$$G = \bigwedge \{ \neg v \mid v \in A, I \models v \} \land \bigwedge \{ v \mid v \in A, I \not\models v \},$$

there exists a STRIPS_{C,B} one-step plan.

Assume there exists a compilation preserving plan size linearly leading to a STRIPS_B domain structure \mathscr{D}' . There are exponentially many possible initial states, but only polynomially many different *c*-step plans for \mathscr{D}' . Some STRIPS_B plan π is used for different initial states I_1 , I_2 (for large enough k). Let v be a variable with $I_1(v) \neq I_2(v) \rightsquigarrow$ In one case, v must be set by π , in the other case, it must be cleared.

~> This is not possible in an unconditional plan.

→ The transformation is **not solution preserving**

→ Conditional effects cannot be compiled away (if plan size can grow only linearly)

February 12th, 2014

BURG

Expressive Powe Compilation Schemes Compilability Positive Results

Negative Results

Circuit Complexity

General Compilability Results

Consider domain \mathcal{D} with only one (STRIPS_{C,B}) operator o:

$$\langle \top, (p_1 \rhd \neg p_1) \land (\neg p_1 \rhd p_1) \land \ldots \land (p_k \rhd \neg p_k) \land (\neg p_k \rhd p_k) \rangle,$$

which "inverts" a given state. For all (I, G) with

 $G = \bigwedge \{ \neg v \mid v \in A, I \models v \} \land \bigwedge \{ v \mid v \in A, I \not\models v \},$

there exists a STRIPS_{C,B} one-step plan.

Assume there exists a compilation preserving plan size linearly leading to a STRIPS_B domain structure \mathscr{D}' . There are exponentially many possible initial states, but only polynomially many different *c*-step plans for \mathscr{D}' . Some STRIPS_B plan π is used for different initial states I_1 , I_2 (for large enough *k*). Let *v* be a variable with $I_1(v) \neq I_2(v)$ \sim In one case, *v* must be set by π , in the other case, it must be cleared.

~> This is not possible in an unconditional plan.

→ The transformation is **not solution preserving**

→ **Conditional effects** cannot be compiled away (if plan size can grow only linearly)

February 12th, 2014

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

Consider domain \mathcal{D} with only one (STRIPS_{C,B}) operator o:

$$\langle \top, (p_1 \rhd \neg p_1) \land (\neg p_1 \rhd p_1) \land \ldots \land (p_k \rhd \neg p_k) \land (\neg p_k \rhd p_k) \rangle,$$

which "inverts" a given state. For all (I, G) with

 $G = \bigwedge \{ \neg v \mid v \in A, I \models v \} \land \bigwedge \{ v \mid v \in A, I \not\models v \},$

there exists a STRIPS_{C,B} one-step plan.

Assume there exists a compilation preserving plan size linearly leading to a STRIPS_{*B*} domain structure \mathscr{D}' . There are exponentially many possible initial states, but only polynomially many different *c*-step plans for \mathscr{D}' . Some STRIPS_{*B*} plan π is used for different initial states I_1 , I_2 (for large enough *k*). Let *v* be a variable with $I_1(v) \neq I_2(v)$.

ightarrow In one case, ν must be set by π , in the other case, it must be cleared.

~> This is not possible in an unconditional plan.

~> The transformation is **not solution preserving**

Conditional effects cannot be compiled away (if plan size can grow only linearly)

February 12th, 2014

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

Consider domain \mathcal{D} with only one (STRIPS_{C,B}) operator o:

$$\langle \top, (p_1 \rhd \neg p_1) \land (\neg p_1 \rhd p_1) \land \ldots \land (p_k \rhd \neg p_k) \land (\neg p_k \rhd p_k) \rangle,$$

which "inverts" a given state. For all (I, G) with

 $G = \bigwedge \{ \neg v \mid v \in A, I \models v \} \land \bigwedge \{ v \mid v \in A, I \not\models v \},$

there exists a STRIPS_{C,B} one-step plan.

Assume there exists a compilation preserving plan size linearly leading to a STRIPS_B domain structure \mathscr{D}' . There are exponentially many possible initial states, but only polynomially many different *c*-step plans for \mathscr{D}' . Some STRIPS_B plan π is used for different initial states I_1 , I_2 (for large enough k). Let v be a variable with $I_1(v) \neq I_2(v)$. \rightsquigarrow In one case, v must be set by π , in the other case, it must be cleared.

 \rightsquigarrow This is not possible in an unconditional plan.

→ The transformation is **not solution preserving**

→ Conditional effects cannot be compiled away (if plan size can

February 12th, 2014

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

Consider domain \mathcal{D} with only one (STRIPS_{C,B}) operator o:

$$\langle \top, (p_1 \rhd \neg p_1) \land (\neg p_1 \rhd p_1) \land \ldots \land (p_k \rhd \neg p_k) \land (\neg p_k \rhd p_k) \rangle,$$

which "inverts" a given state. For all (I,G) with

 $G = \bigwedge \{ \neg v \mid v \in A, I \models v \} \land \bigwedge \{ v \mid v \in A, I \not\models v \},$

there exists a STRIPS_{C,B} one-step plan.

Assume there exists a compilation preserving plan size linearly leading to a STRIPS_B domain structure \mathscr{D}' . There are exponentially many possible initial states, but only polynomially many different *c*-step plans for \mathscr{D}' . Some STRIPS_B plan π is used for different initial states I_1 , I_2 (for large enough k). Let v be a variable with $I_1(v) \neq I_2(v)$. \rightsquigarrow In one case, v must be set by π , in the other case, it must be cleared.

→ This is not possible in an unconditional plan.

~ The transformation is not solution preserving

→ Conditional effects cannot be compiled away (if plan size can grow only linearly)

February 12th, 2014

BURG

Propositional STRIPS and

Power Measuring

Consider domain \mathcal{D} with only one (STRIPS_{C,B}) operator o:

$$\langle \top, (p_1 \rhd \neg p_1) \land (\neg p_1 \rhd p_1) \land \ldots \land (p_k \rhd \neg p_k) \land (\neg p_k \rhd p_k) \rangle,$$

which "inverts" a given state. For all (I, G) with

 $G = \bigwedge \{ \neg v \mid v \in A, I \models v \} \land \bigwedge \{ v \mid v \in A, I \not\models v \},$

there exists a STRIPS_{C,B} one-step plan.

Assume there exists a compilation preserving plan size linearly leading to a STRIPS_B domain structure \mathscr{D}' . There are exponentially many possible initial states, but only polynomially many different *c*-step plans for \mathscr{D}' . Some STRIPS_B plan π is used for different initial states I_1 , I_2 (for large enough k). Let v be a variable with $I_1(v) \neq I_2(v)$. \rightsquigarrow In one case, v must be set by π , in the other case, it must be cleared.

→ This is not possible in an unconditional plan.

~> The transformation is not solution preserving

→ Conditional effects cannot be compiled away (if plan size can grow only linearly)

February 12th, 2014

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

February 12th, 2014

Another Negative Result: $STRIPS_{Bc} \not\preceq^{c}$ STRIPS_N

k-FISEX: Planning problem with fixed plan length k and varying initial state. Does there exist an initial state leading to a successful *k*-step plan? 1-FISEX is NP-complete for STRIPS_{Bc} (= SAT).

k-FISEX is polynomial for STRIPS_N (regression analysis)

\rightsquigarrow STRIPS_{Bc} \preceq_p^c STRIPS_N (if P \neq NP)

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform complexity classes such as **P/poly**.

Bäckström's conjecture holds in the compilation framework.

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

Another Negative Result: $STRIPS_{Bc} \not\preceq^{c}$ $STRIPS_{N}$

k-FISEX: Planning problem with fixed plan length k and varying initial state. Does there exist an initial state leading to a successful k-step plan?

1-FISEX is NP-complete for STRIPS_{Bc} (= SAT). k-FISEX is polynomial for STRIPS_N (regression analysis)

 \rightsquigarrow STRIPS_{Bc} \preceq_p^c STRIPS_N (if P \neq NP)

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform complexity classes such as **P**/poly.

Bäckström's conjecture holds in the compilation framework.

UNI FREIBL

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

k-FISEX: Planning problem with fixed plan length *k* and varying initial state. Does there exist an initial state leading to a successful *k*-step plan?

1-FISEX is NP-complete for $STRIPS_{Bc}$ (= SAT).

k-FISEX is polynomial for STRIPS_N (regression analysis)

 \rightsquigarrow STRIPS_{*Bc*} \preceq^c_p STRIPS_{*N*} (if P \neq NP)

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform complexity classes such as **P**/poly.

Bäckström's conjecture holds in the compilation framework.

2

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

k-FISEX: Planning problem with fixed plan length *k* and varying initial state. Does there exist an initial state leading to a successful *k*-step plan?

- 1-FISEX is NP-complete for $STRIPS_{Bc}$ (= SAT).
- *k*-FISEX is polynomial for STRIPS_N (regression analysis)

\rightsquigarrow STRIPS_{Bc} $\not\preceq_p^c$ STRIPS_N (if P \neq NP)

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform complexity classes such as **P**/poly.

Bäckström's conjecture holds in the compilation framework.

February 12th, 2014

Motivation

2

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

k-FISEX: Planning problem with fixed plan length *k* and varying initial state. Does there exist an initial state leading to a successful *k*-step plan?

- 1-FISEX is NP-complete for $STRIPS_{Bc}$ (= SAT).
- *k*-FISEX is polynomial for STRIPS_N (regression analysis)

$\rightsquigarrow \mathsf{STRIPS}_{Bc} \not\preceq^c_p \mathsf{STRIPS}_N \text{ (if } \mathsf{P} \neq \mathsf{NP})$

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform complexity classes such as **P/poly**.

Bäckström's conjecture holds in the compilation framework.

Motivatio

2

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Pow

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

k-FISEX: Planning problem with fixed plan length *k* and varying initial state. Does there exist an initial state leading to a successful *k*-step plan?

1-FISEX is NP-complete for $STRIPS_{Bc}$ (= SAT).

k-FISEX is polynomial for STRIPS_N (regression analysis)

\rightsquigarrow STRIPS_{Bc} $\not{\preceq}_{p}^{c}$ STRIPS_N (if P \neq NP)

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform complexity classes such as **P/poly**.

Bäckström's conjecture holds in the compilation framework.

February 12th, 2014

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

k-FISEX: Planning problem with fixed plan length *k* and varying initial state. Does there exist an initial state leading to a successful *k*-step plan?

1-FISEX is NP-complete for $STRIPS_{Bc}$ (= SAT).

k-FISEX is polynomial for STRIPS_N (regression analysis)

 $\rightsquigarrow \mathsf{STRIPS}_{Bc} \not\preceq^c_{\rho} \mathsf{STRIPS}_N \text{ (if } \mathsf{P} \neq \mathsf{NP})$

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform complexity classes such as **P/poly**.

Bäckström's conjecture holds in the compilation framework.

February 12th, 2014

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

- Boolean preconditions have the power of families of Boolean circuits with logarithmic depth (because Boolean formula have this power) (= NC¹)
- Conditional effects can simulate only families of circuits with fixed depth (= AC⁰).
- The parity function can be expressed in the first framework (NC¹) while it cannot be expressed in the second (AC⁰).
- The negative result follows unconditionally!

Motivation

URG

m

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

- Boolean preconditions have the power of families of Boolean circuits with logarithmic depth (because Boolean formula have this power) (= NC¹)
- Conditional effects can simulate only families of circuits with fixed depth (= AC⁰).
- The parity function can be expressed in the first framework (NC¹) while it cannot be expressed in the second (AC⁰).
- The negative result follows unconditionally!

Motivation

URG

m

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Besults

- Boolean preconditions have the power of families of Boolean circuits with logarithmic depth (because Boolean formula have this power) (= NC¹)
- Conditional effects can simulate only families of circuits with fixed depth (= AC⁰).
- The parity function can be expressed in the first framework (NC¹) while it cannot be expressed in the second (AC⁰).

The negative result follows unconditionally!

Motivation

URG

m

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

- Boolean preconditions have the power of families of Boolean circuits with logarithmic depth (because Boolean formula have this power) (= NC¹)
- Conditional effects can simulate only families of circuits with fixed depth (= AC⁰).
- The parity function can be expressed in the first framework (NC¹) while it cannot be expressed in the second (AC⁰).
- → The negative result follows unconditionally!

Motivation

URG

m

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

Boolean Circuits

- We know what Boolean circuits are (directed, acyclic graphs with different types of nodes: and, or, not, input, output)
- Size of circuit = number of gates
- Depth of circuit = length of longest path from input gate to output gate
- When we want to recognize formal languages with circuits, we need a sequence of circuits with an increasing number of input gates ~> family of circuits
- Families with polynomial size and poly-log (log^k n) depth
- complexity classes NC^k (Nick's class)
- NC = \bigcup_k NC^k ⊆ *P*, the class of problems that can be solved efficiently in parallel
- The class of languages that can be characterized by polynomially sized Boolean formulae is identical to NC¹

B. Nebel, R. Mattmüller - Al Planning

FRE

Ē

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

Circuit Complexity

General Compilability Results

The classes AC^k

UNI FREIBURG

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation

Compilability

Positive Results

Negative Results

Circuit Complexity

General Compilability Results

Summary

The classes NC^k are defined with a fixed fan-in

- If we have unbounded fan-in, we get the classes AC^k
 gate types: NOT, *n*-ary AND, *n*-ary OR for all n > 2
- Obviously: $NC^k \subseteq AC^k$
- Possible to show: $AC^{k-1} \subseteq NC^k$
- The parity language is in NC¹, but not in AC⁰!

Accepting languages with families of domain structures with fixed goals

- We will view families of domain structures with fixed goals and fixed size plans as "machines" that accept languages
- Consider families of poly-sized domain structures in STRIPS_B and use one-step plans for acceptance.
- Obviously, this is the same as using Boolean formulae
- \rightarrow All languages in NC¹ can be accepted in this way

Motivation

DRG

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation Schemes

Compilability

Positive Results

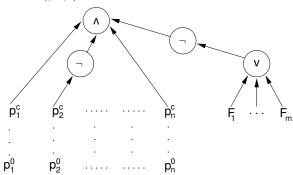
Negative Results

Circuit Complexity

General Compilability Results

Simulating STRIPS_{*C*,*N*} *c*-step Plans with AC^0 circuits (1)

Represent each operator and then chain the actions together $(O(|O|^c))$ different plans):



Motivation

DRD

Ē

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Powe

Compilation

Compilability

Positive Results

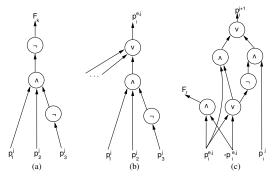
Negative Result

Circuit Complexity

General Compilability Results

Simulating STRIPS_{C,N} *c*-Step Plans with AC⁰ circuits (2)

For each single action (precondition testing (a), conditional effects (b), and the computation of effects (c)



Motivation

Ē

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power

Compilation

Compilability

Positive Results

Negative Result

Circuit Complexity

General Compilability Results

$\text{STRIPS}_B \not\preceq^c \text{STRIPS}_{C,N}$

UNI FREIBURG

Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power Compilation Schemes Compilability Positive Results Negative Results

Circuit Complexity

General Compilability Results

Summary

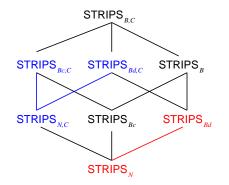
Theorem

 $STRIPS_B \not\preceq^{c} STRIPS_{C,N}$.

Proof.

Assuming STRIPS_{*B*} \leq^{c} STRIPS_{*C*,*N*} has the consequence that the underlying compilation scheme could be used to compile a NC¹ circuit family into an AC⁰ circuit family, which is impossible in the general case.

General Results for Compilability Preserving Plan Size Linearly



Motivation

Propositional STRIPS and Variants

Expressive Power

Measuring Expressive Power Compilation Schemes Compilability Positive Results Negative Results

Circuit Complexity

General Compilability Results

Summary

All other potential positive results have been ruled out by our 3 negative results and transitivity.

Motivation

Propositional STRIPS and Variants

Expressive Power

Summary

Summary

February 12th, 2014

Summary

- Compilation schemes seem to be the right method to measure the relative expressive power of planning formalisms
- Either we get a positive result preserving plan size linearly with a polynomial-time compilation
- or we get an impossibility result
- $ightarrow\,$ Results are relevant for building planning systems
- CNF preconditions do not add much when we have already conditional effects
 - Note: In all cases we can get a positive result if we allow for a polynomial blow-up of the plans.

Motivation

> Propositional STRIPS and Variants

Expressive Power

Summary

38/38