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How hard is planning?

We have seen that planning can be done in time
polynomial in the size of the transition system.
However, we have not seen algorithms which are
polynomial in the input size (size of the task description).

 What is the precise computational complexity of the
planning problem?
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Why computational complexity?

understand the problem
know what is not possible
find interesting subproblems that are easier to solve
distinguish essential features from syntactic sugar

Is STRIPS planning easier than general planning?
Is planning for FDR tasks harder than for propositional
tasks?
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Nondeterministic Turing machines

Definition (nondeterministic Turing machine)
A nondeterministic Turing machine (NTM) is a 6-tuple
〈Σ,�,Q,q0,qY,δ 〉 with the following components:

input alphabet Σ and blank symbol � /∈ Σ

alphabets always nonempty and finite
tape alphabet Σ� = Σ∪{�}

finite set Q of internal states with initial state q0 ∈Q and
accepting state qY ∈Q

nonterminal states Q′ := Q \{qY}
transition relation δ ⊆ (Q′×Σ�)× (Q×Σ�×{−1,+1})
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Deterministic Turing machines

Definition (deterministic Turing machine)
A deterministic Turing machine (DTM) is an NTM where the
transition relation is functional, i. e., for all 〈q,a〉 ∈ Q′×Σ�,
there is exactly one triple 〈q′,a′,∆〉 with 〈〈q,a〉,〈q′,a′,∆〉〉 ∈ δ .

Notation: We write δ (q,a) for the unique triple 〈q′,a′,∆〉 such
that 〈〈q,a〉,〈q′,a′,∆〉〉 ∈ δ .
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Turing machine configurations

Definition (Configuration)
Let M = 〈Σ,�,Q,q0,qY,δ 〉 be an NTM.
A configuration of M is a triple 〈w,q,x〉 ∈ Σ∗�×Q×Σ+

� .
w: tape contents before tape head
q: current state
x: tape contents after and including tape head
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Turing machine transitions

Definition (yields relation)
Let M = 〈Σ,�,Q,q0,qY,δ 〉 be an NTM.
A configuration c of M yields a configuration c′ of M,
in symbols c ` c′, as defined by the following rules,
where a,a′,b ∈ Σ�, w,x ∈ Σ∗�, q,q′ ∈Q and
〈〈q,a〉,〈q′,a′,∆〉〉 ∈ δ :

〈w,q,ax〉 ` 〈wa′,q′,x〉 if ∆ = +1, |x| ≥ 1
〈w,q,a〉 ` 〈wa′,q′,�〉 if ∆ = +1
〈wb,q,ax〉 ` 〈w,q′,ba′x〉 if ∆ =−1
〈ε,q,ax〉 ` 〈ε,q′,�a′x〉 if ∆ =−1
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Accepting configurations

Definition (accepting configuration, time)
Let M = 〈Σ,�,Q,q0,qY,δ 〉 be an NTM,
let c = 〈w,q,x〉 be a configuration of M, and let n ∈ N0.

If q = qY, M accepts c in time n.
If q 6= qY and M accepts some c′ with c ` c′ in time n, then
M accepts c in time n +1.

Definition (accepting configuration, space)
Let M = 〈Σ,�,Q,q0,qY,δ 〉 be an NTM,
let c = 〈w,q,x〉 be a configuration of M, and let n ∈ N0.

If q = qY and |w|+ |x| ≤ n, M accepts c in space n.
If q 6= qY and M accepts some c′ with c ` c′ in space n,
then M accepts c in space n.
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Accepting words and languages

Definition (accepting words)
Let M = 〈Σ,�,Q,q0,qY,δ 〉 be an NTM.
M accepts the word w ∈ Σ∗ in time (space) n ∈ N0
iff M accepts 〈ε,q0,w〉 in time (space) n.

Special case: M accepts ε in time (space) n ∈ N0
iff M accepts 〈ε,q0,�〉 in time (space) n.

Definition (accepting languages)
Let M = 〈Σ,�,Q,q0,qY,δ 〉 be an NTM, and let f : N0→ N0.
M accepts the language L⊆ Σ∗ in time (space) f
iff M accepts each word w ∈ L in time (space) f(|w|),
and M does not accept any word w /∈ L (in any time/space).
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Time and space complexity classes

Definition (DTIME, NTIME, DSPACE, NSPACE)
Let f : N0→ N0.
Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.
Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.
Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.
Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.
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Polynomial time and space classes

Let P be the set of polynomials p : N0→ N0 whose
coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)
P =

⋃
p∈P DTIME(p)

NP =
⋃

p∈P NTIME(p)
PSPACE =

⋃
p∈P DSPACE(p)

NPSPACE =
⋃

p∈P NSPACE(p)
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Polynomial complexity class relationships

Theorem (complexity class hierarchy)
P⊆ NP⊆ PSPACE = NPSPACE

Proof.
P⊆ NP and PSPACE⊆ NPSPACE is obvious because
deterministic Turing machines are a special case of
nondeterministic ones.
NP⊆ NPSPACE holds because a Turing machine can only
visit polynomially many tape cells within polynomial time.
PSPACE = NPSPACE is a special case of a classical result
known as Savitch’s theorem (Savitch 1970).
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The propositional planning problem

Definition (plan existence)
The plan existence problem (PlanEx)
is the following decision problem:
Given: Planning task Π
Question: Is there a plan for Π?

 decision problem analogue of satisficing planning

Definition (bounded plan existence)
The bounded plan existence problem (PlanLen)
is the following decision problem:
Given: Planning task Π, length bound K ∈ N0
Question: Is there a plan for Π of length at most K?

 decision problem analogue of optimal planning
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Plan existence vs. bounded plan existence

Theorem (reduction from PlanEx to PlanLen)
PlanEx≤p PlanLen

Proof.
A propositional planning task with n state variables has a plan
iff it has a plan of length at most 2n−1.
 map instance Π of PlanEx to instance 〈Π,2n−1〉 of
PlanLen, where n is the number of n state variables of Π

 polynomial reduction
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Membership in PSPACE

Theorem (PSPACE membership for PlanLen)
PlanLen ∈ PSPACE

Proof.
Show PlanLen ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:
def plan(〈A, I,O,G〉, K ):

s := I
k := K
while s 6|= G:

guess o ∈O
fail if o not applicable in s or k = 0
s := appo(s)
k := k−1

accept

February 5th, 2014 B. Nebel, R. Mattmüller – AI Planning 21 / 32



Motivation

Background

Complexity
of planning
(Bounded) plan
existence

PSPACE-
completeness

More
complexity
results

Summary

Hardness for PSPACE

Idea: generic reduction

For an arbitrary fixed DTM M with space bound
polynomial p and input w, generate planning task which is
solvable iff M accepts w in space p(|w|).
For simplicity, restrict to TMs which never move to the left
of the initial head position (no loss of generality).
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Reduction: state variables

Let M = 〈Σ,�,Q,q0,qY,δ 〉 be the fixed DTM and let p be its
space-bound polynomial.
Given input w1 . . .wn, define relevant tape positions
X := {1, . . . ,p(n)}.

State variables
stateq for all q ∈Q
headi for all i ∈ X ∪{0,p(n) +1}
contenti,a for all i ∈ X , a ∈ Σ�

 allows encoding a Turing machine configuration
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Reduction: initial state

Let M = 〈Σ,�,Q,q0,qY,δ 〉 be the fixed DTM and let p be its
space-bound polynomial.
Given input w1 . . .wn, define relevant tape positions
X := {1, . . . ,p(n)}.

Initial state
Initially true:

stateq0

head1
contenti,wi for all i ∈ {1, . . . ,n}
contenti,� for all i ∈ X \{1, . . . ,n}

Initially false:
all others
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Reduction: operators

Let M = 〈Σ,�,Q,q0,qY,δ 〉 be the fixed DTM and let p be its
space-bound polynomial.
Given input w1 . . .wn, define relevant tape positions
X := {1, . . . ,p(n)}.

Operators
One operator for each transition rule δ (q,a) = 〈q′,a′,∆〉
and each cell position i ∈ X :

precondition: stateq ∧headi ∧contenti,a
effect: ¬stateq ∧¬headi ∧¬contenti,a

∧stateq′ ∧headi+∆∧contenti,a′
If q = q′ and/or a = a′, omit the effects on stateq and/or
contenti,a, to avoid consistency condition issues.
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Reduction: goal

Let M = 〈Σ,�,Q,q0,qY,δ 〉 be the fixed DTM and let p be its
space-bound polynomial.
Given input w1 . . .wn, define relevant tape positions
X := {1, . . . ,p(n)}.

Goal
stateqY
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PSPACE-completeness for STRIPS plan
existence

Theorem (PSPACE-completeness; Bylander, 1994)
PlanEx and PlanLen are PSPACE-complete.
This is true even when restricting to STRIPS tasks.

Proof.
Membership for PlanLen was already shown.
Hardness for PlanEx follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PlanEx. (Note that the reduction only generates STRIPS
tasks.)
Membership for PlanEx and hardness for PlanLen follows
from the polynomial reduction from PlanEx to PlanLen.

February 5th, 2014 B. Nebel, R. Mattmüller – AI Planning 27 / 32



Motivation

Background

Complexity
of planning

More
complexity
results

Summary
More complexity results

February 5th, 2014 B. Nebel, R. Mattmüller – AI Planning 28 / 32



Motivation

Background

Complexity
of planning

More
complexity
results

Summary

More complexity results

In addition to the basic complexity result presented in this
chapter, there are many special cases, generalizations,
variations and related problems studied in the literature:

different planning formalisms
e. g., finite-domain representation, nondeterministic
effects, partial observability, schematic operators,
numerical state variables

syntactic restrictions of planning tasks
e. g., without preconditions, without conjunctive effects,
STRIPS without delete effects

semantic restrictions of planning task
e. g., restricting to certain classes of causal graphs

particular planning domains
e. g., Blocksworld, Logistics, FreeCell
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Complexity results for different planning
formalisms

Some results for different planning formalisms:
FDR tasks:

same complexity as for propositional tasks (“folklore”)
also true for the SAS+ special case

nondeterministic effects:
fully observable: EXP-complete (Littman, 1997)
unobservable: EXPSPACE-complete (Haslum & Jonsson,
1999)
partially observable: 2-EXP-complete (Rintanen, 2004)

schematic operators:
usually adds one exponential level to PlanEx complexity
e. g., classical case EXPSPACE-complete (Erol et al.,
1995)

numerical state variables:
undecidable in most variations (Helmert, 2002)
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Summary

Propositional planning is PSPACE-complete.
The hardness proof is a polynomial reduction that
translates an arbitrary polynomial-space DTM into a
STRIPS task:

Configurations of the DTM are encoded by propositional
variables.
Operators simulate transistions of the DTM.
The DTM accepts an input iff there is a plan for the
corresponding STRIPS task.

This implies that there is no polynomial algorithm for
classical planning unless P=PSPACE.
It also means that classical planning is not polynomially
reducible to any problem in NP unless NP=PSPACE.
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