Principles of Knowledge Representation and Reasoning

B. Nebel, S. Wölfl, J.Hué Winter Semester 2012/2013 University of Freiburg Department of Computer Science

Exercise Sheet 3 Due: November 14th, 2012

Exercise 3.1 (FORMULA GAME, 1+1)

The FORMULA GAME is a two-player game played on a given quantified Boolean formula (in prenex normal form) $Q_1p_1 \ldots Q_k p_k \psi$. The rules are simple: If the outermost unassigned variable p_i is universally (existentially) quantified, it is the turn of player U (player E resp.) who assigns a truth value to that variable p_i . Thus both players finally construct a truth assignment I to the variables occurring in the matrix formula ψ . Player E wins the game if $I(\psi) = 1$; otherwise, player U wins the game.

Check whether one of the players U or E has a strategy for winning the formula game for the following formulae:

- (a) $\forall p \forall q \exists r \forall s ((p \land r) \to (q \land s))$
- (b) $\forall p \exists q \exists r ((p \rightarrow q) \land (q \rightarrow \neg r) \land (r \lor \neg p))$

Exercise 3.2 (Reduction, 1+2+4)

- (a) Show that PSPACE = co-PSPACE.
- (b) Show that with regard to Turing reductions the class of all NP-hard problems coincides with the class of all co-NP-hard problems.
- (c) We consider the following two-player game \mathcal{G} played on a directed graph $\langle V, A \rangle$ with a designated start node $v_0 \in V$. Player 1 and player 2 choose in turn some arc in the graph such that each chosen arc starts in the head of the previously chosen arc. Player 1 begins with choosing an arc starting in node v_0 . A player looses the game if s/he is unable to choose an arc to a not yet visited node in the graph.

Show that the following problem is PSPACE-complete.

Instance: A directed graph $\langle V, A \rangle$, a start node v_0 .

Question: Does Player 1 have a strategy for winning \mathcal{G} ?

Hint: Existence of a winning strategy in the formula game (see exercise 3.1) is known to be PSPACE-complete even for QBF of the following form:

 $\exists x_1 \forall x_2 \exists x_3 \forall x_4 \dots \exists x_{2k-1} \forall x_{2k} \exists x_{2k+1} \psi,$

where ψ is a 3-CNF formula. For the reduction construct for a given formula of this form a directed graph. The following subgraphs will be useful:

• For each propositional variable introduce a subgraph with four nodes that represents that a variable has been assigned a truth value.

The current player will have to decide on the truth value of the next unassigned variable x_i . Note that the node corresponding to the chosen assignment may not be revisited in the game.

• Furthermore introduce nodes for each clause c_i of ψ and the literals l_{i_1} , ..., l_{i_3} occurring in it. For example, if $c_i = x_{i_1} \vee \neg x_{i_2} \vee x_{i_3}$:

Finally discuss the size of your graph and relate the winning strategies in the games.

Exercise 3.3 (Belief operators, 1+1+1)

Use two modal belief operators to represent the following statements:

- (a) If Adam believes that Eve believes that an apple is sweet if it is red, then Adam believes that as well.
- (b) Both Adam and Eve believe that, if an apple is red, the respective other believes that the apple is sweet.

Assume now that Adam sees a red apple. Given (a) and (b), does it follow that Adam believes that the apple is sweet? Provide an informal argument.