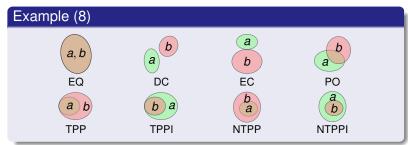
Possibilistic QSTR

Possibilistic Qualitative Spatial and Temporal Reasoning

Institut für Informatik Albert-Ludwigs-Universität Freiburg


Bachelor/MasterArbeit

Constraint-based Qualitative Reasoning

Possibilistic OSTR

Reasoning about qualitative aspects of time and/or space (infinite!) with finitely many qualitative relations between entities of interest e.g., *before*, *during*, *part of*, . . .

Formal relational language \mathcal{L} as a set of relations, usually jointly exhaustive and pairwise disjoint.

Constraint-based Qualitative Reasoning

Possibilistic QSTR

Reasoning about qualitative aspects of time and/or space (infinite!) with finitely many qualitative relations between entities of interest e.g., *before*, *during*, *part of*, . . .

Formal relational language \mathcal{L} as a set of relations, usually jointly exhaustive and pairwise disjoint.

Example (Allen's Interval Calculus - AIC)

I before
$$J$$
I meets J
I overlaps J
I during J
I starts J
I finishes J
I equals J
I equals J
I converse relations

Qualitative Constraints

Possibilistic QSTR

Using relations as constraints

Consider reasoning problems, e.g.:

$$\varphi := \exists x, y, z \in x \text{ (PO or DC) } y \land y \text{ PO } z \land x \text{ DC } z$$

→ satisfiable if there exists a consistent atomic refinement

Consistency?

Inference rules on triples of the form:

$$\forall x, y, z \in (x R' y \land y R'' z) \rightarrow \neg (x R z)$$

also known as "composition"

complete set of valid rules is refutation complete for non-dijunctive relations

Motivation

Possibilistic QSTR

- The previous framework is defined relatively to first-order logic;
- Sometimes preferences can appear between relations: why not a multi-valued logic?

Disconnection > Overlapping

Possibilistic Logic

Possibilistic QSTR

Possibilistic logic uses two values to characterize an event:

- Possibility value (Π): measuring if the event is compatible with the current knowledge.
- Necessity value (N): measuring how forced is the event. (Litterally how compatible the negation of the event is).

Merits:

- Very easy representation of uncertainty: $\Pi(x) = 1$ and N(x) = 0.
- Not too intractable $(\mathcal{O}(NP^{\log n}))$.

What we are looking for?

Possibilistic QSTR

> Embed possibilistic logic within QSTR and realize an implementation based on the GQR solver!

Example

$$\varphi := \exists x, y, z \in : \begin{cases} \langle x \text{ PO } y, 0.4 \rangle \lor \langle x \text{ DC } y, 1 \rangle & \land \\ \langle y \text{ PO } z, 0.9 \rangle & \land \\ \langle x \text{ DC } z, 1 \rangle & \end{cases}$$